• Title/Summary/Keyword: Secondary particles

Search Result 357, Processing Time 0.025 seconds

Influences of Asian Dust, Haze, and Mist Events on Chemical Compositions of Fine Particulate Matters at Gosan Site, Jeju Island in 2014 (황사, 연무, 박무 현상이 미세먼지 화학조성에 미치는 영향: 2014년 제주도 고산지역 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Yang, Seung-Hyuk;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.67-81
    • /
    • 2016
  • In order to examine the variation characteristics of chemical compositions in accordance with the different meteorological conditions, $PM_{10}$ and $PM_{2.5}$ were collected at Gosan site of Jeju Island in 2014, and then their ionic and elemental species were analyzed. The concentrations of nss-$SO{_4}^{2-}$ and $NH_4{^+}$ were respectively 4.3 and 3.3 times higher in fine particle mode ($PM_{2.5}$) compared to coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentration was 1.6 times higher in coarse mode compared to fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased highly as 7.7 and 4.5 times in coarse particle mode, and 3.0 and 4.9 times higher in fine particles, respectively. Especially, the concentrations of the crustal species (Al, Fe, Ca, K, Mn, Ba, Sr, etc.) indicated a noticeable increase during the Asian dust days. For the haze days, the concentrations of secondary pollutants increased 2.2~2.7 and 2.9~6.0 times in coarse and fine particles, respectively, and they were 0.8~1.1 and 1.8~2.4 times, respectively, during the mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. The clustered back trajectory analysis showed that the concentrations of nss-$SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when the inflow pathway of air mass was from the southern part of China.

Characteristics of PM Chemical Component during Haze Episode and Asian Dust at Gwang-ju (광주지역 고농도 및 황사 시의 미세먼지 화학적 성분 특성)

  • Lee, Yeong-Jae;Jung, Sun-A;Jo, Mi-Ra;Kim, Sun-Jung;Park, Mi-Kyung;Ahn, Joon-Young;Lyu, Young-Sook;Choi, Won-Jun;Hong, You-Deog;Han, Jin-Seok;Lim, Jae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.434-448
    • /
    • 2014
  • The aerosol characteristics between haze episode and Asian dust event were identified in January and March, 2013 in Gwang-ju of Korea to investigate the metal elements, ionic concentrations and carbonaceous particles of $PM_{2.5}$ and $PM_{10}$. In the haze episode, the concentrations were increased 1~3.2 times of ionic species and 1.6~2.7 of metal elements. Especially, the concentration of $NO{_3}{^-}$, $SO{_4}{^2-}$ and $NH{_4}{^+}$ consists of 50 percent in ionic species during haze episode that was higher than Asian dust event. This suggests that secondary aerosols from anthropogenic air pollution were mainly contributed by haze episode. During the Asian dust event, increase of metal concentrations was higher than haze episode because of remarkable increase of Ti, K and Fe originated from soil. The concentrations of carbonaceous particles were increased 2.5 times during haze episode, and 2.4 times of OC and 2.1 times of EC during Asian dust event in $PM_{2.5}$. However, these aerosol mass concentration does not affect the OC/EC ratio. The average equivalence ratios of cations/anions in $PM_{2.5}$ were 0.99 in haze episodes and 0.94 during non-event day. The neutralization factor of $NH_3$ was higher than that of $CaCO_3$. Futhermore, $NH{_4}{^+}$ aerosol was aged due to atmospheric stagnation that might be affected by the haze episode.

Proton Conducting Composite Membranes Consisting of PVC-g-PSSA Graft Copolymer and Heteropolyacid (PVC-g-PSSA가지형 공중합체와 헤테로폴리산을 이용한 수소이온 전도성 복합 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Yeon, Seung-Hyeon;Ahn, Ik-Sung;Park, Jin-Won
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.

Concentration Characteristics and Health Effect Assessment of Atmospheric Particulate Matters During Asian Dust Storm Episodes (황사 에피소드 발생시 대기먼지의 농도 특성과 인체 영향)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • The Asian dust storms which originated in the deserts of Mongolia and China transported particles to Korea and led to a high concentration of atmospheric particulate matters (PM) of more than $1000{\mu}g/m^3$ throughout the country in the spring, of 2007. Public concern, in Korea, about the possible adverse effects of these dust events has increased, as these dust storms can contain various air pollutants emitted from heavily industrialized eastern China. The objectives of this study were to understand the concentration characteristics of PM as a function of particle size between the Asian dust storm episodes and non-Asian dust period and to consider the mass size distribution of PM in the Asian dust storms and their water soluble ion species on the potential, possible effects on deposition levels in the three regions (nasopharyngeal, tracheobronchial, and alveolar) of the human respiratory system. The size distribution of PM mass concentration during the Asian dust storms showed a peak in the coarse particle region due to the long-range transport of soil particles from the deserts of Mongolia and China, which was identified by HYSPLIT-4 model for backward trajectory analysis of air arriving in the sampling site of Iksan. During the non-Asian dust period, there were two different types in PM size distribution: bimodal distribution when low concentrations of $PM_{2.5}$ were observed, while unimodal distribution having a peak in fine particle region when high concentrations of $PM_{2.5}$ were showed. This unimodal distribution with high concentrations of fine particulate and secondary air pollutants such as ${SO_4}^{2-}$, ${NO_3}^-$, ${NH_4}^+$ was found to be due to the long-range transport of air pollutants from industrialized eastern China. During the Asian dust storms, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $128.8{\mu}g/m^3$, $216.5{\mu}g/m^3$, and $89.6{\mu}g/m^3$, respectively. During the non-Asian dust period, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $8.4{\mu}g/m^3$, $9.5{\mu}g/m^3$ and $38.5{\mu}g/m^3$, respectively.

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries (리튬이차전지용 탄소 코팅된 Li2MnSiO4 양극활물질의 상형성 거동 및 충방전 특성)

  • Sun, Ho-Jung;Chae, Suman;Shim, Joongpyo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.143-149
    • /
    • 2015
  • Carbon-coated $Li_2MnSiO_4$ powders as the active materials for the cathode were synthesized by planetary ball milling and solid-state reaction, and their phase formation behavior and charge-discharge properties were investigated. Calcination temperature and atmosphere were controlled in order to obtain the ${\beta}-Li_2MnSiO_4$ phase, which was active electrochemically, and the carbon-coated $Li_2MnSiO_4$ active material powders with near single phase ${\beta}-Li_2MnSiO_4$ could be fabricated. The particles of the synthesized powders were secondary particles composed of primary ones of about 100 nm size. The carbon incorporation was essential to enable the Li ions to be inserted and extracted from $Li_2MnSiO_4$ active materials, and the initial capacity of 192 mAh/g could be obtained in the $Li_2MnSiO_4$ active materials with 4.8 wt% of carbon.

Ultrathin Carbon Shell-Coated Intermetallic Alloy Nanoparticles for Oxygen Reduction Reaction in Fuel Cells (초박형 카본쉘이 코팅된 금속간 화합물 합금 나노 입자로 구성된 연료전지용 산소 환원 반응 촉매)

  • Hyeonwoo Choi;Keonwoo Ko;Yoonseong Choi;Jiho Min;Yunjin Kim;Sourabh Sunil Chougule;Khikmatulla Davletbaev;Chavan Abhishek Arjun;Beomjun Pak;Namgee Jung
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.208-214
    • /
    • 2024
  • To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 ℃ is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.

Effect of Particle Size and Velocity Ratio on the Flow Mixing Characteristics in the Secondary Combustor (덕티드 로켓의 이차 연소기 내에서 입자의 크기와 속도비가 유동 혼합에 미치는 영향)

  • Park, Jung Shin;Park, Soon Sang;Han, Doo-Hee;Shin, Jun-Su;Sung, Hong-Gye;Kwak, Jae Su;Choi, Ho-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, the effect of velocity ratio and particle size on the flow mixing characteristics in the secondary combustor was investigated. Both PIV(Particle Image Velocimetry) technique and LES(Large Eddy Simulation) were applied. Two sizes of Polystyrene PIV seeding particle of 5 and $50{\mu}m$, and three velocity ratios of 5, 3, and 1.5 were considered. Results showed that the mixing of two air streams created reattachment and recirculation regions. The size of the recirculation region was decreased as the velocity ratio increased. For the larger particle cases, due to the increased momentum by the larger particles, the size of the recirculating regions were larger than that of the smaller particle cases and the effect of the velocity ratio was not as significant as in the smaller particle case.

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Identification of Atmospheric PM10 Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Area by Using PMF (PMF모델을 이용한 용인.수원 경계지역에서 PM10 오염원의 확인과 상대적 기여도의 추정)

  • Lee, Hyung-Woo;Lee, Tae-Jung;Yang, Sung-Su;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.439-454
    • /
    • 2008
  • The purpose of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions to the study area, based on the analysis of the $PM_{10}$ mass concentration and the associated inorganic elements, ions, and total carbon. The contribution of $PM_{10}$ sources was estimated by applying a receptor method because identifying air emission sources were effective way to control the ambient air quality. $PM_{10}$ particles were collected from May to November 2007 in the Yongin-Suwon bordering area. $PM_{10}$ samples were collected on quartz filters by a $PM_{10}$ high-volume air sampler. The inorganic elements (Al, Mn, V, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Ba, Ti and Ag) were analyzed by an ICP-AES after proper pre-treatments of each sample. The ionic components of these $PM_{10}$ samples ($Cl^_$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) were analyzed by an IC. The carbon components (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) were also analyzed by DRI/OGC analyzer. Source apportionment of $PM_{10}$ was performed using a positive matrix factorization (PMF) model. After performing PMF modeling, a total of 8 sources were identified and their contribution were estimated. Contributions from each emission source were as follows: 13.8% from oil combustion and industrial related source, 25.4% from soil source, 22.1% from secondary sulfate, 12.3% from secondary nitrate, 17.7% from auto emission including diesel (12.1%) and gasoline (5.6%), 3.1% from waste incineration and 5.6% from Na-rich source. This study provides information on the major sources affecting air quality in the receptor site, and therefore it will help us maintain and manage the ambient air quality in the Yongin-Suwon bordering area by establishing reliable control strategies for the related sources.