Proton Conducting Composite Membranes Consisting of PVC-g-PSSA Graft Copolymer and Heteropolyacid

PVC-g-PSSA가지형 공중합체와 헤테로폴리산을 이용한 수소이온 전도성 복합 전해질막

  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Choi, Jin-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Yeon, Seung-Hyeon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Ik-Sung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김종학 (연세대학교 화공생명공학과) ;
  • 고종관 (연세대학교 화공생명공학과) ;
  • 최진규 (연세대학교 화공생명공학과) ;
  • 연승현 (연세대학교 화공생명공학과) ;
  • 안익성 (연세대학교 화공생명공학과) ;
  • 박진원 (연세대학교 화공생명공학과)
  • Published : 2009.06.30

Abstract

A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.

본 연구에서는 poly(vinyl chloride) (PVC)가지형 공중합체 전해질과 헤테로폴리산(HPA)을 이용하여 유무기 합성 전해질막을 제조하였다. poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA)는 PVC의 이차 염소의 직접적인 개시를 이용한 atom transfer radical polymerization (ATRP)로 합성하였다. 이때, HPA 나노입자는 수소 결합을 통해 PVC-g-PSSA 가지형 공중합체와 결합하는 것을 FT-IR spectroscopy를 통하여 확인하였다. 전해질막의 수소이온 전도도는 HPA의 질량 분율이 0.3이 될 때까지 상온에서 0.049에서 0.068 S/cm로 증가하였다. 이것은 HPA 나노입자 고유의 전도도와 가지형 공중합체가 가지고 있는 술폰산의 강화된 산도 때문이라고 추정된다. 합습률은 HPA의 질량 분율이 0.45까지 증가할수록 130에서 84%로 감소하였다. 이것은 HPA나노입자와 고분자 메트릭스 사이의 수소 결합의 상호작용 때문에 물을 흡수하는 site의 수가 감소한 결과라고 볼 수 있다. 열중량 분석결과 HPA의 농도가 증가할수록 전해질막의 열적 안정성이 강화된다는 것을 알 수 있었다.

Keywords

References

  1. M. Higa, Y. Fujino, T. Koumoto, R. Kitani, and S. Egashira, 'All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization', Electrochim. Acta, 50, 3832 (2005) https://doi.org/10.1016/j.electacta.2005.02.037
  2. X. L. Wang, A. Mei, M. Li, Y. Lin, and C.W. Nan, 'Effect of silane-functionalized mesoporous silica SBA-15 on performance of PEO-based composite polymer electrolytes', Solid State Ionics, 177, 1287 (2006) https://doi.org/10.1016/j.ssi.2006.06.016
  3. A. S. A. Khiar, R. Puteh, and A. K. Arof, 'Conductivity studies of a chitosan-based polymer electrolyte', Physica B: Condensed Matter, 373, 23 (2006) https://doi.org/10.1016/j.physb.2005.10.104
  4. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, 'New Insights into the Coordination Mode of Silver Ions Dissolved in poly(2-ethyl-2-oxazoline) and its relation to facilitated olefin Transport', Macromolecules, 35, 5250 (2002) https://doi.org/10.1021/ma020179t
  5. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, 'Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles', Chem. Commun., 14, 1662 (2004)
  6. S. R. Majid and A. K. Arof, 'Proton-conducting polymer electrolyte films based on chitosan acetate complexed with $NH_4NO_3$ salt', Physica B: Condensed Matter, 355, 78 (2005) https://doi.org/10.1016/j.physb.2004.10.025
  7. M. Kufaci, A. Bozkurt, and M. Tulu, 'Poly(ethyl-eneglycol methacrylate phosphate) and heterocycle based proton conducting composite materials', Solid State Ionics, 177, 1003 (2006) https://doi.org/10.1016/j.ssi.2006.03.026
  8. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, 'Preparation and Characterization of Cross-linked Block and Random Sulfonated Polyimide Membranes for Fuel Cell', Membrane Journal, 16, 241 (2006)
  9. D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Preparation and Characterization of Fluorenyl Polymer Electrolyte Mem branes Containing PFCB Groups', Membrane Journal, 16, 16 (2006)
  10. B.-J. Chang, D.-J. Kim, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Synthesis and Characterization of polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications', Korean Membr. J., 9, 43 (2007)
  11. S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on crosslinked sulfonated poly(ether ether ketone) (SPEEK)', J. Membr. Sci., 233, 93 (2004) https://doi.org/10.1016/j.memsci.2004.01.004
  12. P. X. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. J. Kaliagune, 'Sulfonated Poly (aryl ether ketone)s Containing Naphthalene Moieties Obtained by Direct Copolymerization as Novel Polymers for Proton Exchange Membranes', Polym. Sci. A. Polym. Chem., 42, 2866 (2004) https://doi.org/10.1002/pola.20152
  13. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, 'Preparation and characterization of proton-conducting crosslinked diblock copolymler membranes', J. Appl. Polym. Sci., 107, 819 (2008) https://doi.org/10.1002/app.27122
  14. Z. Wang, H. Ni, C. Zhao, X. Li, T. Fu, and H. Na, 'Investigation of sulfonated poly(ether ether ketone sulfone)/heteropolyacid composite membranes for high temperature fuel cell applications', J. Polym. Sci. B: Polym. Phys., 44, 1967 (2006) https://doi.org/10.1002/polb.20841
  15. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, 'Fabrication and characterization of heteropolyacid ($H_3PW_{12}O_{40}$)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Membr. Sci., 212, 263 (2003) https://doi.org/10.1016/S0376-7388(02)00507-0
  16. T. Z. Fu, C. J. Zhao, S. L. Zhong, G. Zhang, K. Shao, H. Q. Zhang, J. Wang, and H. Na, 'SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages', J. Power Sources, 165, 708 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.023
  17. X. F. Li, D. Xu, G. Zhang, Z. Wang, C. J. Zhao, and H. Na, 'Influence of casting conditions on the properties of sulfonated poly(ether ether ketone ketone)/phosphotungstic acid composite proton exchange membranes', J. Appl. Polym. Sci., 103, 4020 (2007) https://doi.org/10.1002/app.25543
  18. M. L. Hill, Y. S. Kim, B. R. Einsla, and J. E. McGrath, 'Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells', J. Membr. Sci., 283, 102 (2006) https://doi.org/10.1016/j.memsci.2006.06.016
  19. J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, 'Nanocomposite polymer electrolytes containing silica nanoparticles: Comparison between poly(ethylene glycol) and poly(ethylene oxide) dimethyl ether', J. Appl. Polym. Sci., 106, 4083 (2007) https://doi.org/10.1002/app.26951
  20. M. F. Zhang and T. P. Russell, 'Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerizatìon', Macromolecules, 39, 3531 (2006) https://doi.org/10.1021/ma060128m
  21. J. F. Hester, P. Banerjee, Y. Y. Won, A. Akthakul, M. H. Acar, and A. M. Mayes, 'ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives', Macromolecules, 35, 7652 (2002) https://doi.org/10.1021/ma0122270
  22. A. Mokrini and J. L. Acosta, 'Studies of sulfonated block copolymer and its blends', Polymer, 42, 9 (2001) https://doi.org/10.1016/S0032-3861(00)00353-0
  23. X. Li, C. Liu, H. Lu, C. Zhao, Z. Wang, W. Xing, and H. Na., 'Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application', J. Membr. Sci., 255, 149 (2005) https://doi.org/10.1016/j.memsci.2005.01.046
  24. R. S. McLean, M. Doyle, and B. B. Sauer, 'High-Resolutìon Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques', Macromolecules, 33, 6541 (2000) https://doi.org/10.1021/ma000464h
  25. H. Zhang, J. H. Pang, D. Wang, A. Li, X. Li, and Z. Jiang, 'Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes', J. Membr. Sci., 264, 56 (2005) https://doi.org/10.1016/j.memsci.2005.04.021
  26. K. D. Kreuer, 'Proton Conductivity: Materials and Applications', Chem. M$\alpha$ter., 8, 610 (1996) https://doi.org/10.1021/cm950192a