DOI QR코드

DOI QR Code

Ultrathin Carbon Shell-Coated Intermetallic Alloy Nanoparticles for Oxygen Reduction Reaction in Fuel Cells

초박형 카본쉘이 코팅된 금속간 화합물 합금 나노 입자로 구성된 연료전지용 산소 환원 반응 촉매

  • Hyeonwoo Choi (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Keonwoo Ko (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yoonseong Choi (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jiho Min (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yunjin Kim (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sourabh Sunil Chougule (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Khikmatulla Davletbaev (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chavan Abhishek Arjun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Beomjun Pak (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Namgee Jung (Graduate School of Energy Science and Technology, Chungnam National University)
  • 최현우 (충남대학교 에너지과학기술대학원) ;
  • 고건우 (충남대학교 에너지과학기술대학원) ;
  • 최윤성 (충남대학교 에너지과학기술대학원) ;
  • 민지호 (충남대학교 에너지과학기술대학원) ;
  • 김윤진 (충남대학교 에너지과학기술대학원) ;
  • ;
  • ;
  • ;
  • 박범준 (충남대학교 에너지과학기술대학원) ;
  • 정남기 (충남대학교 에너지과학기술대학원)
  • Received : 2024.02.23
  • Accepted : 2024.04.09
  • Published : 2024.04.27

Abstract

To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 ℃ is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. K. Ko, D. Kim, J. Min, B. Sravani, Y. Kim, S. Lee, T. Sul, S. Jang and N. Jung, Adv. Sci., 11, 2307073 (2024).
  2. K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi and Y. Morimoto, Nat. Nanotechnol., 16, 140 (2021).
  3. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal., B, 56, 9 (2005).
  4. K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin and M. D. Guiver, Nature, 595, 361 (2021).
  5. C. Y. Ahn, J. E. Park, S. Kim, O. H. Kim, W. Hwang, M. Her, S. Y. Kang, S. Park, O. J. Kwon, H. S. Park, Y. H. Cho and Y. E. Sung, Chem. Rev., 121, 15075 (2021).
  6. A. Kulkarni, S. Siahrostami, A. Patel and J. K. Norskov, Chem. Rev., 118, 2302 (2018).
  7. T. Wang, A. Chutia, D. J. L. Brett, P. R. Shearing, G. He, G. Chai and I. P. Parkin, Energy Environ. Sci., 14, 2639 (2021).
  8. S. S. Chougule, A. A., S. R. Chowdhury, J. Min, Y. Kim, K. Ko, B. Sravani and N. Jung, Carbon Energy, 5, e293 (2023).
  9. J. Min, S. S. Chougule, B. Sravani, K. Ko, Y. Kim and N. Jung, Curr. Opin. Electrochem., 39, 101257 (2023).
  10. Y. Kim, J.-H. Jang, J. Min, A. A. Jeffery, S. Lee, S. S. Chougule, M. Kim, N. Jung and S. J. Yoo, J. Mater. Chem. A, 9, 24480 (2021).
  11. D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B. S. Mun, K.-S. Lee, N.-S. Lee, S. J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung and T. Hyeon, J. Am. Chem. Soc., 137, 15478 (2015).
  12. H. Cheng, R. Gui, H. Yu, C. Wang, S. Liu, H. Liu, T. Zhou, N. Zhang, X. Zheng, W. Chu, Y. Lin, H. A. Wu, C. Wu and Y. Xie, Proc. Natl. Acad. Sci. U. S. A., 118, e2104026118 (2021).
  13. C. Li, W. Zhao, X. Lu, Z. Chen, B. Han, X. Zhang, J. Chen, Y. Shao, J. Huo, Y. Zhu, Y. Deng, S. Sun and S. Liao, J. Energy Chem., 78, 340 (2023).
  14. H. Choi, Y. Choi, J. Min, K. Ko, Y. Kim, S. S. Chougule, D. Khikmatulla and N. Jung, Nanomaterials, 27, 101739 (2023).
  15. J. Min, K. Ko, Y. Kim, S. R. Chowdhury, A. A. Jeffery, S. S. Chougule and N. Jung, Chem. Commun., 59, 5681 (2023).
  16. J Min, S. Kim, A. A. Jeffery, H. Shin, Y. S. Kang, Y. Kim, J. Jang, S. Lee, S.-H. Park, G.-G. Park, S. J. Yoo, S.-D. Yim and N. Jung, Mater. Today Energy, 29, 101124 (2022).
  17. K. Ko, J. Min, Y. Kim, M. W. Hong, A. A. Jeffery, S. S. Chougule, K. B. Yi and N. Jung, ChemElectroChem, 9, e202200342 (2022).
  18. J. Jang, M. Sharma, D. Choi, Y. S. Kang, Y. Kim, J. Min, H. Sung, N. Jung and S. J. Yoo, ACS Appl. Mater. Interfaces, 11, 27735 (2019).
  19. X. Liu, Z. Zhao, J. Liang, S. Li, G. Lu, C. Priest,T. Wang, J. Han, G. Wu, X. Wang,Y. Huang and Q. Li, Angew. Chem., Int. Ed., 62, e202302134 (2023). https://doi.org/10.1002/anie.202302134
  20. E. Antolini, Appl. Catal., B, 217, 201 (2017).