DOI QR코드

DOI QR Code

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Choi, Yongjoo (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Ahn, Junyoung (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Park, Jinsoo (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Oh, Jun (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Lee, Gangwoong (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Park, Taehyun (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Park, Gyutae (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Owen, Jeffrey S. (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Lee, Taehyoung (Department of Environmental Science, Hankuk University of Foreign Studies)
  • Received : 2017.07.04
  • Accepted : 2017.09.12
  • Published : 2017.12.31

Abstract

To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Keywords

References

  1. Aiken, A.C., DeCarlo, P.F., Jimenez, J.L. (2007) Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Analytical Chemistry 79, 8350-8358. https://doi.org/10.1021/ac071150w
  2. Aiken, A.C., DeCarlo, P.F., Kroll, J.H., Worsnop, D.R., Huffman, J.A., Docherty, K., Ulbrich, I.M., Mohr, C., Kimmel, J.R., Sueper, D., Zhang, Q., Sun, Y., Trimborn, A., Northway, M., Ziemann, P.J., Canagaratna, M.R., Onasch, T.B., Alfarra, R., Prevot, A.S.H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., Jimenez, J.L. (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high resolution time-of-flight aerosol mass spectrometry. Environmental Science & Technology 42, 4478-4485. https://doi.org/10.1021/es703009q
  3. Altieri, K.E., Seitzinger, S.P., Carlton, A.G., Turpin, B.J., Klein, G.C., Marshall, A.G. (2008) Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmospheric Environment 42, 1476-1490. https://doi.org/10.1016/j.atmosenv.2007.11.015
  4. Andrews, E., Saxena, P., Musarra, S., Hildemann, L.M., Koutrakis, P., McMurry, P.H., Olmez, I., White, W.H. (2000) Concentration and composition of atmospheric aerosols from the 1995 SEAVS experiment and a review of the closure between chemical and gravimetric measurements. Journal of Air & Waste Management Association 50, 648-664. https://doi.org/10.1080/10473289.2000.10464116
  5. Boy, M., Karl, T., Turnipseed, A., Mauldin, R.L., Kosciuch, E., Greenberg, J., Rathbone, J., Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B., Kulmala, M., Guenther, A. (2008) New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics 8, 1577-1590. https://doi.org/10.5194/acp-8-1577-2008
  6. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E., Hofmann, D.J. (1992) Climate Forcing by Anthropogenic Aerosols. Science 255, 423-430. https://doi.org/10.1126/science.255.5043.423
  7. Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z.Q., Lawson, D.R., Ashbaugh, L.L. (1994) Temporal and Spatial variations of $PM_{2.5}$ and $PM_{10}$ aerosol in the outhern California Air-Quality study. Atmospheric Environment 28, 2061-2080. https://doi.org/10.1016/1352-2310(94)90474-X
  8. Chung, S.H., Seinfeld, J.H. (2002) Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research 107, doi:10.1029/2001JD001397
  9. Corrigan, C.E., Novakov, T. (1999) Cloud condensation nucleus activity of organic compounds: a laboratory study. Atmospheric Environment 33, 2661-2668. https://doi.org/10.1016/S1352-2310(98)00310-0
  10. DeCarlo, P.F., Kimmel, J.R., Trimborn, A., Northway, M.J., Jayne, J.T., Aiken, A.C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K.S., Worsnop, D.R. Jimenez, J.L. (2006) Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Analytical Chemistry 78, 8281-8289. https://doi.org/10.1021/ac061249n
  11. Donahue, N.M., Robinson, A.L., Stanier, C.O., Pandis, S.N. (2006) Coupled partitioning, dilution and chemical aging of semivolatile organics. Environmental Science and Technology 40, 2635-2643. https://doi.org/10.1021/es052297c
  12. Donahue, N.M., Robinson, A.L., Pandis, S.N. (2009) Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmospheric Environment 43, 94-106. https://doi.org/10.1016/j.atmosenv.2008.09.055
  13. Drewnick, F., Hings, S.S., DeCarlo, P., Jayne, J. T., Gonin, M., Fuhrer, K., Weimer, S., Jimenez, J. L., Demerjian, K.L., Borrmann, S., Worsnop, D.R. (2005) A new time-of-flight aerosol mass spectrometer (TOF-AMS)-instrument description and first field deployment. Aerosol Science and Technology 39, 637-658. https://doi.org/10.1080/02786820500182040
  14. Ervans, B., Turpin, B.J., Weber, R.J. (2011) Secondary aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmospheric Chemistry and Physics 11, 11069-11102. https://doi.org/10.5194/acp-11-11069-2011
  15. Fuzzi, S., Andreae, M.O., Huebert, B.J., Kulmala, M., Bond, T.C., Boy, M., Doherty, S.J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V.M., Lohmann, U., Russell, L.M., Poschl, U. (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics 6, 2017-2038. https://doi.org/10.5194/acp-6-2017-2006
  16. Giebl, H., Berner, A., Reischl, G., Puxbaum, H., Kasper-Giebl, A., Hitzenberger, R. (2002) CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter. Journal of Aerosol Science 33, 1623-1634. https://doi.org/10.1016/S0021-8502(02)00115-5
  17. Graus, M., Müller, M., Hansel, A. (2010) High Resolution PTR-TOF: Quantification and Formula Confirmation of VOC in Real Time. Journal of the American Society for Mass Spectrometry 21, 1037-1044. https://doi.org/10.1016/j.jasms.2010.02.006
  18. Heald, C.L., Jacob, D.J., Park, R.J., Russell, L.M., Huebert, B.J., Seinfeld, J.H., Liao, H., Weber, R.J. (2005) A large organic aerosol source in the free troposphere missing from current models. Geophysical Research Letters 32, doi:10.1029/2005GL023831
  19. Hildebrandt, L., Engelhart, G.J., Mohr, C., Kostenidou, E., Lanz, V.A., Bougiatioti, A., DeCarlo, P.F., Prevot, A.S.H., Baltensperger, U., Mihalopoulos, N., Donahue, N.M., Pandis, S.N. (2010) Aged organic aerosol in the Eastern Mediterranean: The Finokalia Aerosol Measurement Experiment-2008. Atmospheric Chemistry and Physics 10, 4167-4186. https://doi.org/10.5194/acp-10-4167-2010
  20. Holzinger, R., Lee, A., Paw, K.T., Goldstein, A.H. (2005) Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmospheric Chemistry and Physics 5, 67-75. https://doi.org/10.5194/acp-5-67-2005
  21. Hoyle, C.R., Berntsen, T., Myhre, G., Isaksen, I.S.A. (2007) Secondary organic aerosol in the global aerosol - chemical transport model Oslo CTM2. Atmospheric Chemistry and Physics 7, 5675-5694. https://doi.org/10.5194/acp-7-5675-2007
  22. Huffman, J.A., Docherty, K.S., Mohr, C., Cubison, M.J., Ulbrich, I.M., Ziemann, P.J., Onasch, T.B., Jimenez, J.L. (2009) Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources. Environmental Science and Technology 43, 5351-5357. https://doi.org/10.1021/es803539d
  23. Jayne, J.T., Leard, D.C., Zhang, X.F., Davidovits, P., Smith, K.A., Kolb, C.E., Worsnop, D.R. (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Science and Technology 33, 49-70. https://doi.org/10.1080/027868200410840
  24. Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., Dunlea, E.J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U., Worsnop, D.R. (2009) Evolution of Organic Aerosols in the Atmosphere. Science 326, 1525-1529. https://doi.org/10.1126/science.1180353
  25. Jimenez, J.L., Jayne, J.T., Shi, Q., Kolb, C.E., Worsnop, D.R., Yourshaw, I., Seinfeld, J.H., Flagan, R.C., Zhang, X.F., Smith, K.A., Morris, J.W., Davidovits, P. (2003) Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical Research 108, doi:10.1029/2001JD001213
  26. Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Mark, L., Seehauser, H., Schottkowsky, R., Sulzer, P., Mark, T.D. (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). International Journal of Mass Spectrometry 286, 122-128. https://doi.org/10.1016/j.ijms.2009.07.005
  27. Kim, Y., Yoon, S., Kim, S., Kim, K., Lim, H., Ryu, J. (2013) Observation of new particle formation and growth events in Asian continental outflow. Atmospheric Environment 64, 160-168. https://doi.org/10.1016/j.atmosenv.2012.09.057
  28. Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V.M., Birmili, W., McMurry, P.H. (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science 35, 143-176. https://doi.org/10.1016/j.jaerosci.2003.10.003
  29. Kumar, P.P., Broekhuizen, K., Abbatt, J.P.D. (2003) Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species. Atmospheric Chemistry and Physics 3, 509-520. https://doi.org/10.5194/acp-3-509-2003
  30. Lee, G., Choi, H.-S., Lee, T., Choi, J., Park, J.S., Ahn, J.Y. (2012) Variations of regional background peroxyacetyl nitrate in marine boundary layer over Baengyeong Island, South Korea. Atmospheric Environment 61, 533-541. https://doi.org/10.1016/j.atmosenv.2012.07.075
  31. Lee, T., Choi, J., Lee, G., Ahn, J.Y., Park, J.S., Atwood, S.A., Schurman, M., Choi, Y., Chung, Y., Collett, J.L., Jr. (2015) Characterization of Aerosol Composition, Concentrations, and Sources at Baengnyeong Island, Korea using an Aerosol Mass Spectrometer. Atmospheric Environment 120, 297-306. https://doi.org/10.1016/j.atmosenv.2015.08.038
  32. Lee, T., Yu, X., Ayres, B., Kreidenweis, S.M., Malm, W.C., Collett, J.L., Jr. (2008a) Observations of fine and coarse particle nitrate at several rural locations in the United States. Atmospheric Environment 42, 2720-2732. https://doi.org/10.1016/j.atmosenv.2007.05.016
  33. Lee, T., Yu, X., Kreidenweis, S.M., Malm, W.C., Collett, J.L., Jr. (2008b) Semi-continuous measurement of $PM_{2.5}$ ionic composition at several rural locations in the United States. Atmospheric Environment 42, 6655-6669. https://doi.org/10.1016/j.atmosenv.2008.04.023
  34. Levin, E.J., Prenni, A.J., Petters, M.D., Kreidenweis, S.M., Sullivan, R.C., Atwood, S.A., Ortega, J., DeMott, P.J., Smith, J.N. (2012) An annual cycle of size-resovled aerosol hygroscopicity at a forested site in Colorado. Journal of Geophysical Research 117, doi:10.1029/2011JD016854
  35. Lim, Y.B., Tan, Y., Turpin, B.J. (2013) Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase. Atmospheric Chemistry and Physics 13, 8651-8667. https://doi.org/10.5194/acp-13-8651-2013
  36. Matsui, H., Koike, M., Takegawa, N., Kondo, Y., Griffin, R.J., Miyazaki, Y., Yokouchi, Y., Ohara, T. (2009) Secondary organic aerosol formation in urban air: Temporal variations and possible contributions from unidentified hydrocarbons. Journal of Geophysical Research 114, doi:0.1029/2008JD010164 https://doi.org/10.1029/2008JD010164
  37. Ng, N.L., Canagaratna, M.R., Jimenez, J.L., Chhabra, P.S., Seinfeld, J.H., Worsnop, D.R. (2011) Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics 11, 6465-6474. https://doi.org/10.5194/acp-11-6465-2011
  38. Ng, N.L., Canagaratna, M.R., Zhang, Q., Jimenez, J.L., Tian, J., Ulbrich, I.M., Kroll, J.H., Docherty, K.S., Chhabra, P.S., Bahreini, R., Murphy, S.M., Seinfeld, J.H., Hildebrandt, L., Donahue, N.M., DeCarlo, P.F., Lanz, V.A., Prevot, A.S.H., Dinar, E., Rudich, Y., Worsnop, D.R. (2010) Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics 10, 4625-4641. https://doi.org/10.5194/acp-10-4625-2010
  39. Odum, J.R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R.C., Seinfeld, J.H. (1996) Gas/particle partitioning and secondary organic aerosol yields. Environmental Science and Technology 30, 2580-2585. https://doi.org/10.1021/es950943+
  40. Ostro, B., Chestnut, L. (1998) Assessing the health benefits of reducing particulate matter air pollution in the United States. Environmental Research 76, 94-106. https://doi.org/10.1006/enrs.1997.3799
  41. Paatero, P. (1997) Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems 37, 23-35. https://doi.org/10.1016/S0169-7439(96)00044-5
  42. Paatero, P., Tapper, U. (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126. https://doi.org/10.1002/env.3170050203
  43. Pankow, J.F. (1994a) An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmospheric Environment 28, 189-193. https://doi.org/10.1016/1352-2310(94)90094-9
  44. Pankow, J.F. (1994b) An absorption model of the gas/aerosol partitioning of organic compounds in the atmosphere. Atmospheric Environment 28, 185-188. https://doi.org/10.1016/1352-2310(94)90093-0
  45. Park, J.H., Goldstein, A.H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., Holzinger, R. (2013) Eddy covariance emission and deposition flux measurements using proton transfer reaction - time of flight - mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes. Atmospheric Chemistry and Physics 13, 1439-1456. https://doi.org/10.5194/acp-13-1439-2013
  46. Perri, M.J., Seitzinger, S., Turpin, B.J. (2009) Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments. Atmospheric Environment 43, 1487-1497. https://doi.org/10.1016/j.atmosenv.2008.11.037
  47. Prenni, A.J., DeMott, P.J., Kreidenweis, S.M., Sherman, D.E., Russell, L.M., Ming, Y. (2001) The effects of low molecular weight dicarboxylic acids on cloud formation. Journal of Physical Chemistry A 105, 11240-11248.
  48. Prenni, A.J., DeMott, P.J., Kreidenweis, S.M. (2003) Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids. Atmospheric Environment 37, 4243-4251. https://doi.org/10.1016/S1352-2310(03)00559-4
  49. Raymond, T.M., Pandis, S.N. (2002) Cloud activation of single-component organic aerosol particles. Journal of Geophysical Research 107, doi:10.1029/2002JD002159
  50. Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pierce, J.R., Pandis, S.N. (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259-1262. https://doi.org/10.1126/science.1133061
  51. Tsigaridis, K., Kanakidou, M. (2003) Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis. Atmospheric Chemistry and Physics 3, 1849-1869. https://doi.org/10.5194/acp-3-1849-2003
  52. Turpin, B.J., Saxena, P., Andrews, E. (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment 34, 2983-3013. https://doi.org/10.1016/S1352-2310(99)00501-4
  53. Ulbrich, I.M., Canagaratna, M.R., Zhang, Q., Worsnop, D.R., Jimenez, J.L. (2009) Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics 9, 2891-2918. https://doi.org/10.5194/acp-9-2891-2009
  54. Yu, X.-Y., Lee, T., Ayres, B.R., Kreidenweis, S.M., Collett, J.L., Jr. (2006) Loss of fine particle ammonium from denuded nylon filters. Atmospheric Environment 40, 4797-4807. https://doi.org/10.1016/j.atmosenv.2006.03.061
  55. Yuan, B., Hu, W.W., Shao, M., Wang, M., Chen, W.T., Lu, S.H., Zeng, L.M., Hu, M. (2013) VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China. Atmospheric Chemistry and Physics 13, 8815-8832. https://doi.org/10.5194/acp-13-8815-2013
  56. Zhang, J.Y., Hartz, K.E.H., Pandis, S.N., Donahue, N.M. (2006) Secondary organic aerosol formation from limonene ozonolysis: Homogeneous and heterogeneous influences as a function of $NO_x$. Journal of Physical Chemistry A 110, 11053-11063. https://doi.org/10.1021/jp062836f
  57. Zhang, Q., Jimenez, J., Canagaratna, M., Ulbrich, I., Ng, N., Worsnop, D., Sun, Y. (2011) Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical Bioanalytical Chemistry 401, 3045-3067. https://doi.org/10.1007/s00216-011-5355-y

Cited by

  1. Effect of SO2 Concentration on NOx Removal Efficiency in NaOH-Based Wet Scrubbing vol.34, pp.5, 2018, https://doi.org/10.5572/KOSAE.2018.34.5.659
  2. Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols vol.737, pp.None, 2017, https://doi.org/10.1016/j.scitotenv.2020.139830