• Title/Summary/Keyword: Search Window

Search Result 208, Processing Time 0.14 seconds

Design of Real-Time Dead Pixel Detection and Compensation System for Image Quality Enhancement in Mobile Camera (모바일 카메라 화질 개선을 위한 실시간 불량 화소 검출 및 보정 시스템의 설계)

  • Song, Jin-Gun;Ha, Joo-Young;Park, Jung-Hwan;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • In this paper, we propose the Real-time Dead-Pixel Detection and Compensation System for mobile camera and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However a conventional Dead-Pixel Detection Algorithm is disable to detect neighboring dead pixels and it degrades image quality by wrong detection and compensation. To detect dead pixels the proposed system is classifying dead pixels into Hot pixel and Cold pixel. Also, the proposed algorithm is processing line-detector and $5{\times}5$ window-detector consecutively. The line-detector and window-detector can search dead pixels by using one-dimensional(only horizontal) method in low frequency area and two-dimensional(vertical and diagonal) method in high frequency area, respectively. The experimental result shows that it can detect 99% of dead pixels. It was designed in Verilog hardware description language and total gate count is 23K using TSMC 0.25um ASIC library.

  • PDF

An Efficient Algorithm for Streaming Time-Series Matching that Supports Normalization Transform (정규화 변환을 지원하는 스트리밍 시계열 매칭 알고리즘)

  • Loh, Woong-Kee;Moon, Yang-Sae;Kim, Young-Kuk
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.600-619
    • /
    • 2006
  • According to recent technical advances on sensors and mobile devices, processing of data streams generated by the devices is becoming an important research issue. The data stream of real values obtained at continuous time points is called streaming time-series. Due to the unique features of streaming time-series that are different from those of traditional time-series, similarity matching problem on the streaming time-series should be solved in a new way. In this paper, we propose an efficient algorithm for streaming time- series matching problem that supports normalization transform. While the existing algorithms compare streaming time-series without any transform, the algorithm proposed in the paper compares them after they are normalization-transformed. The normalization transform is useful for finding time-series that have similar fluctuation trends even though they consist of distant element values. The major contributions of this paper are as follows. (1) By using a theorem presented in the context of subsequence matching that supports normalization transform[4], we propose a simple algorithm for solving the problem. (2) For improving search performance, we extend the simple algorithm to use $k\;({\geq}\;1)$ indexes. (3) For a given k, for achieving optimal search performance of the extended algorithm, we present an approximation method for choosing k window sizes to construct k indexes. (4) Based on the notion of continuity[8] on streaming time-series, we further extend our algorithm so that it can simultaneously obtain the search results for $m\;({\geq}\;1)$ time points from present $t_0$ to a time point $(t_0+m-1)$ in the near future by retrieving the index only once. (5) Through a series of experiments, we compare search performances of the algorithms proposed in this paper, and show their performance trends according to k and m values. To the best of our knowledge, since there has been no algorithm that solves the same problem presented in this paper, we compare search performances of our algorithms with the sequential scan algorithm. The experiment result showed that our algorithms outperformed the sequential scan algorithm by up to 13.2 times. The performances of our algorithms should be more improved, as k is increased.

Filtering Airborne Laser Scanning Data by Utilizing Adjacency Based on Scan Line (스캔 라인 기반의 인접 관계를 이용한 항공레이저측량 자료의 필터링)

  • Lee, Jeong-Ho;Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • This study aims at filtering ALS points into ground and non-ground effectively through labeling and window based algorithm by utilizing 2D adjacency based on scan line. Firstly, points adjacency is constructed through minimal search based on scan line. Connected component labeling algorithm is applied to classify raw ALS points into ground and non-ground by utilizing the adjacency structure. Then, some small objects are removed by morphology filtering, and isolated ground points are restored by IDW estimation. The experimental results shows that the method provides good filtering performance( about 97% accuracy) for diverse sites, and the overall processing takes less time than converting raw data into TIN or raster grid.

Efficient Processing of Multidimensional Vessel USN Stream Data using Clustering Hash Table (클러스터링 해쉬 테이블을 이용한 다차원 선박 USN 스트림 데이터의 효율적인 처리)

  • Song, Byoung-Ho;Oh, Il-Whan;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.137-145
    • /
    • 2010
  • Digital vessel have to accurate and efficient mange the digital data from various sensors in the digital vessel. But, In sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. In this paper, We propose efficient processing method that arrange some sensors (temperature, humidity, lighting, voice) and process query based on sliding window for efficient input stream and pre-clustering using multiple Support Vector Machine(SVM) algorithm and manage hash table to summarized information. Processing performance improve as store and search and memory using hash table and usage reduced so maintain hash table in memory. We obtained to efficient result that accuracy rate and processing performance of proposal method using 35,912 data sets.

An Efficient Approximation method of Adaptive Support-Weight Matching in Stereo Images (스테레오 영상에서의 적응적 영역 가중치 매칭의 효율적 근사화 방법)

  • Kim, Ho-Young;Lee, Seong-Won
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.902-915
    • /
    • 2011
  • Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.

Understanding and Designing Teachable Agent (교수가능 에이전트(Teachable Agent)의 개념적 이해와 설계방안)

  • 김성일;김원식;윤미선;소연희;권은주;최정선;김문숙;이명진;박태진
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.3
    • /
    • pp.13-21
    • /
    • 2003
  • This study presents a design of Teachable Agent(TA) and its theoretical background. TA is an intelligent agent to which students as tutors teach, pose questions, and provide feedbacks using a concept map. TA consists of four independent Modules, Teach Module, Q&A Module, Test Module, and Resource Module. In Teach Module, students teach TA by constructing concept map. In Q&A Module, both students and TA ask questions and answer questions each other through an interactive window. To assess TA's knowledge and provide feedback to students, Test Module consists of a set of predetermined questions which TA should pass. From Resource Module, students can search and look up important information to teach, ask questions, and provide feedbacks whenever they want. It is expected that TA should provide student tutors with an active role in learning and positive attitude toward the subject matter by enhancing their cognition as well as motivation.

  • PDF

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.

A Fast Moving Object Tracking Method by the Combination of Covariance Matrix and Kalman Filter Algorithm (공분산 행렬과 칼만 필터를 결합한 고속 이동 물체 추적 방법)

  • Lee, Geum-boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1477-1484
    • /
    • 2015
  • This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

Protecting the iTrust Information Retrieval Network against Malicious Attacks

  • Chuang, Yung-Ting;Melliar-Smith, P. Michael;Moser, Louise E.;Lombera, Isai Michel
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.179-192
    • /
    • 2012
  • This paper presents novel statistical algorithms for protecting the iTrust information retrieval network against malicious attacks. In iTrust, metadata describing documents, and requests containing keywords, are randomly distributed to multiple participating nodes. The nodes that receive the requests try to match the keywords in the requests with the metadata they hold. If a node finds a match, the matching node returns the URL of the associated information to the requesting node. The requesting node then uses the URL to retrieve the information from the source node. The novel detection algorithm determines empirically the probabilities of the specific number of matches based on the number of responses that the requesting node receives. It also calculates the analytical probabilities of the specific numbers of matches. It compares the observed and the analytical probabilities to estimate the proportion of subverted or non-operational nodes in the iTrust network using a window-based method and the chi-squared statistic. If the detection algorithm determines that some of the nodes in the iTrust network are subverted or non-operational, then the novel defensive adaptation algorithm increases the number of nodes to which the requests are distributed to maintain the same probability of a match when some of the nodes are subverted or non-operational as compared to when all of the nodes are operational. Experimental results substantiate the effectiveness of the detection and defensive adaptation algorithms for protecting the iTrust information retrieval network against malicious attacks.