Abstract
Digital vessel have to accurate and efficient mange the digital data from various sensors in the digital vessel. But, In sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. In this paper, We propose efficient processing method that arrange some sensors (temperature, humidity, lighting, voice) and process query based on sliding window for efficient input stream and pre-clustering using multiple Support Vector Machine(SVM) algorithm and manage hash table to summarized information. Processing performance improve as store and search and memory using hash table and usage reduced so maintain hash table in memory. We obtained to efficient result that accuracy rate and processing performance of proposal method using 35,912 data sets.
디지털 선박에서는 선박 내의 각종 센서로부터 측정된 디지털 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 그러나, 센서 네트워크에서 대용량 스트림 데이터를 제한된 네트워크, 전력, 프로세서를 이용하여 모든 센서 데이터를 전송하고 분석하는 것은 어렵고 효율적이지 못하다. 그러므로, 연속적으로 입력되는 데이터를 사전에 분류하여 특성에 따라 선택적으로 데이터를 처리하는 데이터 분류 기법이 요구된다. 본 논문에서는 디지털 선박 내에 다수 개의 센서(온도, 습도, 조도, 음성 센서)를 배치하고 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 다중 Support Vector Machine(SVM) 알고리즘을 이용하여 사전 분류(pre-clustering)한 후 요약된 정보를 해쉬 테이블로 관리하는 효율적인 처리 기법을 제안한다. 해쉬테이블을 이용하여 다차원 스트림 데이터의 저장될 레코드 순서를 빠르게 찾아 저장 및 검색함으로서 처리 속도가 향상되고 메모리에 해쉬 테이블 만을 유지하면 되므로 메모리 사용량이 감소한다. 35,912개의 데이터 집합을 사용하여 실험한 결과 제안 기법의 정확도와 처리 성능이 향상되었다.