KNN/PFCM Hybrid Algorithm for Indoor Location Determination in WLAN

WLAN 실내 측위 결정을 위한 KNN/PFCM Hybrid 알고리즘

  • Lee, Jang-Jae (Int. of Information Science and Engineering Research, Mokpo National University) ;
  • Jung, Min-A (Dept. of Computer Engineering, Mokpo National University) ;
  • Lee, Seong-Ro (Dept. of Information and Electronics Engineering, Mokpo National University)
  • 이장재 (목포대학교 정보산업연구소) ;
  • 정민아 (목포대학교 컴퓨터공학과) ;
  • 이성로 (목포대학교 정보전자공학과)
  • Received : 2010.06.07
  • Published : 2010.11.25

Abstract

For the indoor location, wireless fingerprinting is most favorable because fingerprinting is most accurate among the technique for wireless network based indoor location which does not require any special equipments dedicated for positioning. As fingerprinting method,k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighborsk and positions of reference points(RPs). So possibilistic fuzzy c-means(PFCM) clustering algorithm is applied to improve KNN, which is the KNN/PFCM hybrid algorithm presented in this paper. In the proposed algorithm, through KNN,k RPs are firstly chosen as the data samples of PFCM based on signal to noise ratio(SNR). Then, thek RPs are classified into different clusters through PFCM based on SNR. Experimental results indicate that the proposed KNN/PFCM hybrid algorithm generally outperforms KNN and KNN/FCM algorithm when the locations error is less than 2m.

무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선 네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 Fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/PFCM 알고리즘이 KNN과 KNN/FCM 알고리즘보다 성능이 우수하다.

Keywords

References

  1. R. Bajaj, S. L. Ranaveera, D. P. Agrawal, "GPS Location Tracking Technology", IEEE Computer, Vol. 35, 2002. https://doi.org/10.1109/MC.2002.993780
  2. A. Harter, A. Hopper, P. Steggles, P. Webster, "The anatomy of context-aware application", Proceeding of fifth annual ACM/IEEE internationa conference on Mobile computing and networking. 1999.
  3. Wireless Technologies for Ubiquitous Services. NTT Review December 2003 Vol. 1, No. 94.
  4. S. Gezici, Z. Tian, G. B. Biannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, Z. Sahinoglu, "Localization via ultra-wideband radios:a look at positioning aspects for future sensor networks", IEEE signal processing magazine, Vol. 12. 2005.
  5. T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, J. Sievanen, "A Probabilistic Approach to WLAN User Location Estimation", Int. J. Wireless Inform. Network, Vol. 9, 2002.
  6. P. Bahl and V.N. Padmanabhan, RADAR: An In-Building RF-based User Location and Tracking System, Proc. IEEE Computer and Communications Societies, Vol. 2, 2000.
  7. 임재철, "옥내 측위을 위한 지문방식 알고리즘들의 성능분석", 대한전자공학회, 제43권, CI편, 제6호, 2006년.
  8. J. C. Bezdek, "Pattern Recognition with Fuzzy Objective Function Algorithms", Plenum, 1987.
  9. R. Krishnapuram, J. M. Keller, "A Possibilistic Approach to Clustering", IEEE Transactions on Fuzzy system, 1993.
  10. N. R. Pal, K. Pal, J. M. Keller and J. C. Bezdek, "A Possibilistic Fuzzy c-Means Clustering Algorithm", IEEE Transactions on Fuzzy system, 2005.
  11. A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughe, F. Potter, J. Tabert, P. Powledge, G. Borriello, B. Schilit, "Place Lab:Device Positioning using Radio Beacons in The Wild", Pervasive Computing, Vol. 3468, 2005.
  12. 김학용, "무선랜 기반 위치정보 서비스", Telecommunication Review, 16(4), pp. 580-590 2006.
  13. A. Hatami, K. Pahlavan, Comparative Statistical Analysis of Indoor Positioning Using Empirical Data and Indoor Radio Channel Models, IEEE CCNC 2006 proceedings. 2006.