• 제목/요약/키워드: Scientific Ability

검색결과 563건 처리시간 0.022초

초인지 수업 전략을 적용한 과학수업이 초등학교 아동들에게 미치는 효과 (The Effect of Metacognitive Teaching Strategy on the Elementary School Children)

  • 김용권;김병렬;이석희
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제22권2호
    • /
    • pp.181-191
    • /
    • 2003
  • In this study, the effects of metacognitive teaching strategy on the students' scientific inquiry ability and scientific attitude were investigated. For the study, two classes of fourth grade from an elementary school in Busan were chosen. Each class was assigned to the experimental group which metacognitive teaching strategy was applied to and the comparative group that traditional teaching method was applied to. The tests of scientific inquiry ability and scientific attitude were administered before and after the instruction period. The results of this study were as follows. There were significant differences between the experimental group and comparative group in scientific inquiry ability and scientific attitude. It was concluded that metacognitive teaching strategy was more effective in the improvement of students' scientific inquiry ability and scientific attitude.

  • PDF

문제발견 중심의 과학토론수업이 초등학생들의 과학 창의적 문제해결력과 과학탐구능력에 미치는 영향 (The Effect of Scientific Discussion Classes Focusing Problem Finding on the Primary School Students' Scientific Creative Problem Solving Ability and Science Process Skills)

  • 김순식;이용섭
    • 대한지구과학교육학회지
    • /
    • 제7권1호
    • /
    • pp.133-143
    • /
    • 2014
  • The purpose of this study was to examine the effect of scientific discussion classes focusing problem finding on the primary school students' scientific creative problem solving ability, science process skills and attitude toward science class. To verify this research problem, the subject of this study was fifth-grade students selected from four classes of M elementary school located in Busan city. For four months, the experimental group of 51 students was taught using the "scientific discussion classes focusing problem finding". The control group also of 53 students was taught in normal classes which used a text-book. All students were given pre and post test to verify the effects of scientific discussion classes focusing problem finding on the primary school students' scientific creative problem solving ability, science process skills and attitude toward science class. The results from this study are as the following. First, the scientific discussion classes focusing problem finding were effective in scientific creative problem solving ability among the primary school students. It is possibly because in the process where one student compare his/her own thoughts with the others' ones and discuss them. Second, the scientific discussion classes focusing problem finding were effective in science process skills among the primary school students. Third, the scientific discussion classes focusing problem finding were effective in attitude toward science class. In conclusion, the scientific discussion classes focusing problem finding had positive effects on improvement of primary school students' scientific creative problem solving ability, science process skills and also could lead to a change in students' cognition about science class to a positive way. Therefore, the scientific discussion class focusing problem finding is hopefully to be provided as an effective instructive strategy of science class in school in the future.

아동의 과학 적성, 창의성, 과학 창의적 문제 해결력간의 관계 (The Relationships between Children's Science Aptitude, Creativity, and Scientific Creative Problem Solving Abilities)

  • 김혜순;강기숙
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제26권1호
    • /
    • pp.32-40
    • /
    • 2007
  • The scientific creativity problem solving ability of children has been greatly emphasized in recent years, because it has been regarded as an example of highly developed reasoning and thinking skills. This study aimed to identify the relationships between scientific aptitude, creativity, and scientific creative problem solving abilities in children. The subjects were 100 5th graders residing in Seoul and a small city in Choongnam. Data was analyzed by t-test and by correlation using spss program packages. The main results of this study were as follows: first, a significant difference was found in the scientific creative problem solving ability of children by their respective levels of science aptitude. Secondly, the scientific creative problem solving ability of the children by their levels of creativity was found to be insignificant. Thirdly, no significant difference was found between creativity and scientific creative problem solving ability among the children examined; however there was a significant difference found between the science aptitude and scientific-creative problem solving ability and between science aptitude and creativity in the children who participated in this study.

  • PDF

과학마술을 활용한 수업이 초등학생의 과학적 태도와 과학탐구능력에 미치는 영향 (The Effect of Science Magic on the Elementary Learners' Scientific Attitude and Scientific Inquiry Ability)

  • 권치순;김미희
    • 대한지구과학교육학회지
    • /
    • 제3권3호
    • /
    • pp.209-218
    • /
    • 2010
  • In this study, we investigate the effects of instruction using science magic program on the scientific attitude and scientific inquiry ability in elementary students. For this study, it was chosen two classes of the forth grades J elementary school in Seoul. Instruction using science magic program was applied to the experimental group for 8 weeks during the school hours. The results of this study were as follows : 1. Science tasks applied science magic had influence on elementary learners' scientific attitude in positive way. 2. Science tasks applied science magic had valuable significance to observation, classification, data intepretation ability. However it had no valuable significance to scientific integrated inquiry.

  • PDF

ARCS 동기화를 통한 과학교육 활동이 유아의 과학적 태도 및 과학적 탐구능력에 미치는 효과 (The Effects of Science Activities on the Scientific Attitudes and Scientific Research Ability of Young Children Using the ARCS Motivational Model)

  • 홍지명;문병환
    • 한국보육지원학회지
    • /
    • 제8권6호
    • /
    • pp.127-146
    • /
    • 2012
  • 본 연구는 Keller의 ARCS 동기화를 통한 과학교육 활동이 유아의 과학적 태도 및 과학적 탐구능력에 어떠한 효과가 있는지를 알아보고자 하였다. 연구대상은 G시에 소재한 유치원 만5세반 2개 학급 40명의 유아(실험집단: 20명, 비교집단: 20명)였다. 본 연구의 결과는 다음과 같다. 첫째, ARCS 동기화를 통한 과학교육활동은 유아의 과학적 태도의 향상에 효과적인 것으로 나타났다. 둘째, ARCS 동기화를 통한 과학교육활동은 유아의 과학적 탐구능력의 향상에 효과적인 것으로 나타났다. 결론적으로 ARCS 동기화를 통한 과학활동은 유아의 과학적 태도 및 과학적 탐구능력을 향상시키는데 효과가 있으며, 이러한 연구의 결과는 ARCS를 통한 과학활동이 유아의 과학적 태도 및 과학적 탐구능력 증진을 위해 적절하고 의미 있는 교수방법으로 유아교육 현장에서 활용해 볼 가치가 있음을 시사한다.

탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향 (Effects of the Inquiry Model on the Scientific Thinking of Preschoolers)

  • 이영석;임명희;박호철
    • 아동학회지
    • /
    • 제22권2호
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

과학적 추론 능력의 발달에서 전두엽연합령의 역할 (The Role of The Prefrontal Lobes in Scientific Reasoning)

  • 허명;;권용주
    • 한국과학교육학회지
    • /
    • 제17권4호
    • /
    • pp.525-540
    • /
    • 1997
  • The present study tested the hypothesis that maturation of the prefrontal lobes is a crucial factor determining the performance of scientific reasoning tasks, Functions of the prefrontal lobes, such as activating relevant information, sequential planning and monitoring, and inhibiting irrelevant information, are related thinking patterns with scientific reasoning. Therefore, we inferred the idea that the prefrontal lobes play an important role in scientific reasoning. To test the hypothesis. the present study investigated a prefrontal lobe patient's task solving procedures in scientific reasoning tasks and the correlation and regression analysis between a test of prefrontal lobe function and two scientific reasoning tasks, The perseverative errors in the Wisconsin Card Sorting Test(WCST) was used as a measure of the prefrontal lobe function, The Melinark Type Task and the Classroom Test of Scientific Reasoning were used as measures of scientific reasoning abilities. Ages and Group Embedded Figure Test were also used as measures of two alternative hypotheses, general maturation and field independency respectively. The prefrontal lobe patient showed a crucial deficiency in solving scientific reasoning tasks. In the tasks, the patient could not used the reasoning of If... and... then... therefore pattern. In correlation study, the perseveration errors of the WCST showed a significantly negative correlation with two scientific reasoning tasks. Multiple regression study also showed that the perseveration errors measured as a function of the prefrontal lobes have more contribution to scientific reasoning ability than contributions of alternative hypotheses. Therefore, the present study supported the hypothesis that prefrontal lobes play a crucial role in scientific reasoning ability, What function of the prefrontal lobes do play crucial role in scientific reasoning? The present study provided an explanation for the question, which inhibiting ability of the prefrontal lobes is responsible for the scientific reasoning ability, in a part at least. That is, perseverative tendency in task-solving procedures causes a deficiency of an ability to inhibit the wrong information to solve a task. The present study provided a possibility of neuropsychological approach in science education research. The present study also showed an importance of the prefrontal lobe development in the performance of scientific reasoning task.

  • PDF

신체움직임을 활용한 순환학습기반 유아과학교육 프로그램이 유아의 과학적 탐구능력, 과학적 태도, 물체조작능력 및 공간능력에 미치는 효과 (The Effects of a Circle-based Early Childhood Science Education Program Using Physical Movement on Young Children's Scientific Inquiry Ability, Scientific Attitude, Object Manipulation Ability and Spatial Ability)

  • 정기분;김지현
    • 한국보육지원학회지
    • /
    • 제15권6호
    • /
    • pp.139-167
    • /
    • 2019
  • Objective: This study aims to investigate the effects of a learning cycle model-based early childhood education program using physical motion on young children's scientific inquiry ability, scientific attitude, object manipulation ability and spatial ability. Methods: The subjects of this study were 60 five-year-old children who were attending K-G City Childcare Center. The SPSS Window 21.0 program and content analysis method were used, and post-validation Tukey was conducted to examine the differences between the one-way ANOVA and the group. Results: Activities using body movement were practiced systematically based on the circle learning. Children could revise their pre-concept and concept of error by interacting with other children, teachers and the environment. Furthermore, children were attaining new knowledge while they were doing body movement activities, assessing and applying them to actual activities. Conclusion/Implications: This study is investigated a cyclic learning-based early childhood science education program using physical motion, which has significance in systematic and practical early childhood centered education for young children.

초등 단위 학교 영재 수업에서 나타나는 과학적 논증 과정에 대한 탐색 (Investigation of Scientific Argumentation in the Classes for Elementary Gifted Students)

  • 임현주;신영준
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제31권4호
    • /
    • pp.513-531
    • /
    • 2012
  • This study was to analyze the characteristic of scientific argumentation in the classes for the gifted of elementary school. The participants of this study were 5 fifth graders and 9 sixth graders, 14 in total, from the basic unit schools for gifted students of J elementary school in Incheon city. And it constituted small scale groups made up of 2~3 students with similar or identical ability in scientific reasoning. It had set up hypothesis for each group before the experiment, and students had a group discussion as a whole after the experiment. Classes were conducted 4 times, all courses were recorded as a sound/video. The ability in scientific reasoning of the students was inspected, making use of SRT II by means of pre-survey, and their argumentation levels were analyzed, utilizing 'Rubric for scientific argumentation course assessment.' As a result, argumentations did not incurred in every class. Analysis in argumentations of the students resulted in low level argumentation. This means argumentation cannot incur based on that with the limit in understanding the principle of experiments over the threshold of textbook no matter that he is an gifted student or not. The student both in formal operational period and transition period (2B/3A), the ability of scientific thinking in upper level, was improved of his argumentative ability in an overall aspect. However, a student of concrete operational period, the ability of scientific thinking in lower level, had argumentation with still lower level even after the experiment at the moment of discussing with the students on the upper level of scientific thinking ability.

유아 대상 프로젝트 접근법 기반 공학적 STEAM 프로그램이 유아의 과학적 탐구능력, 수학적 문제해결력, 창의성에 미치는 효과 (Effects of an Engineering-Focused STEAM Program Based on the Project Approach for Young Children on Their Scientific Inquiry Ability, Mathematical Problem-Solving Ability, and Creativity)

  • 유광재;김지현
    • 한국보육지원학회지
    • /
    • 제19권4호
    • /
    • pp.29-52
    • /
    • 2023
  • Objective: This research aims to examine the effect of a young children's engineering-focused STEAM program based on the project approach - a program that constructs components aligned with children's interests in their play through an engineering design process - on their scientific inquiry ability, mathematical problem-solving ability, and creativity. Methods: In this research, 42 five-year-old children from a public kindergarten in S district, I city, were randomly divided into experimental and comparative groups, each with 21 children. The engineering-focused STEAM program was conducted from April 18 to June 10, 2022, with the experimental group exploring the 'car' theme and the comparison group focusing on a different theme. The study employed an independent sample t-test and analysis of covariance(ANCOVA), using the pretest as a covariate to control variables. Results: The children-selected 'cars' themed engineering-focused STEAM program was effective in enhancing their scientific inquiry ability, mathematical problem-solving ability and creativity. Conclusion/Implications: The engineering-focused STEAM program, which emerges from young children's interesting daily play, had positive effects on enhancing their scientific inquiry ability, mathematical problem-solving ability, and creativity. This research can serve as fundamental data for developing education programs focused on engineering within the STEAM framework, guided by children's emergent play.