• Title/Summary/Keyword: SUMT

Search Result 69, Processing Time 0.027 seconds

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF

A Study on the Geometric Optimization of Truss Structures by Decomposition Method (분할최적화 기법에 의한 트러스 구조물의 형상최적화에 관한 연구)

  • 김성완;이규원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.73-92
    • /
    • 1987
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the cross-sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes, loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures, which can eliminate the above mentioned limitations, is developed in this study. The algorithm proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton Raphson method. In the second level, which also consists of two phases the geometric shape is optimized utillzing the unindirectional search technique of the Powell method which make it possible to minimize only the objective functlon. The algorithm proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two- levels algorithm proposed in this study is safely applicable to any design criteria, and the convergency rate is relatively fast and stable compared with other iteration methods for the geometric optimization of truss structures. It was found for the result of the shape optimization in this study to be decreased greatly in the weight of truss structures in comparison with the shape optimization of the truss utilizing the algorithm proposed with the other area optimum method.

  • PDF

A Study on the Optimum Design of Three Span Continuous Preflex Composite Girder Bridge (3경간 연속 Preflex 합성형교의 최적설계에 관한 연구)

  • Koo, Min Se;Chang, Suong Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.125-135
    • /
    • 1998
  • This study presents a design method for three-span continuous preflex composite girder bridges (3S-PCB) which imposes prestresses in the negative moment region by lifting or lowering interior supports and the design method is automated by a computer program which incorporates optimal design procedure. The objective function for the design of 3S-PCB minimizes the cost of construction materials and the constraint functions represent the limited dimensions of the design section and the allowable stress for each structural member as given in the specifications. Optimal design procedure used in this study is a modification of existing sequential unconstrained minimization technique (SUMT), a numerical analyses procedure for two-span continuous preflex composite bridges. The optimized design sections determined for each span length are compared with those of simple preflex composite beams (SPCB) and the optimal girder depth is determined by defining the relationship between girder depth and construction material costs.

  • PDF

Research on Variable Girder Types and Tendon Arrangement of PSC Box Girder Bridges by using the Optimum Design (최적설계에 의한 PSC 박스 거더교의 변단면 거더유형과 긴장재 배치에 관한 연구)

  • Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.175-185
    • /
    • 2006
  • This study performed the optimum design of balanced and unbalanced span length bridges with many variable Girder types by using the optimum design program to minimize the cost for PSC box girder bridge of the full staging method. The objective of this study is to present tendon's application direction about complicated construction hereafter by studying about optimum tendon arrangement that is worked in each variable Girder type. This program used SUMT procedure and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used in searching design points and Gradient Approximate Method was used to reduce design hours.

A Study on Shape Optimization of Plane Truss Structures (평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관한 구연(究研))

  • Lee, Gyu won;Byun, Keun Joo;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.49-59
    • /
    • 1985
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the Cross sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures which can eliminate the above mentioned limitations, is developed in this study. The algorithm developed utilizes the two-phases technique. In the first phase, the cross sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Raphson method. In the second phase, the geometric shape is optimized utilizing the unidirctional search technique of the Rosenbrock method which make it possible to minimize only the objective function. The algorithm developed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examme its applicability and stability. The numerical comparisons show that the two-phases algorithm developed in this study is safely applicable to any design criteria, and the convergency rate is very fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

On the optimization of the design variables of linear induction motor for 3-D conveyor system (입체 반송용 선형유도전동기의 설계 변수 최적화에 대하여)

  • Im, Dal-Ho;Kim, Gyu-Tak;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.139-142
    • /
    • 1991
  • The design variables of SLIM used for 3-D conveyor system are optimized by nonlinear programing. Five design variables are selected as independent ones and object function is expressed as a combination of the weight and the normal force of the motor. Maximum flux density in the teeth, primary length and starting thrust are chosen as constraint functions. Goodness factor considering of conveying characteristic is also included in the constraints. In this paper sequential unconstrained minimization technique(SUMT) and variable metric method are used to solve the nonlinear problem.

  • PDF

Automatic Optimum Design of Reinforced Concrete Box Culvert Using AutoCAD (AutoCAD를 이용한 철근콘크리트 사각형 암거의 자동화 최적설계)

  • 변근주;이상민;송영철;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.84-89
    • /
    • 1990
  • The objective of this study is to optimize the section of RC box culvert and develop a CAD system for drawing. This paper consists of three parts. In the first part, the external load conditions are systematized by using the literatures and specifications. In the second one, the RC box culvert is optimized using the SUMT algorithm. Sizing variables, and steel ratio are taken as design variables, and a cost function as the objective function. The stress and side constraints are derived from the Korea Concrete Specifications for the ultimate strength design. Finally, a data base and CAD system is developed for the drawing of the optimized section of RC box culverts.

  • PDF

Optimum Design for Inlet and Outlet Locations of Rectangular Expansion Chamber for Improving Acoustic Performance (사각형 단순 확장소음기의 성능향상을 위한 입$\cdot$출구 위치의 최적설계)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.738-746
    • /
    • 1999
  • The performance of muffler can be improved for a frequency range of interest by moving inlet and outlet locations. And optimal location of inlet and outlet can be determined to improve the acoustic performance. The optimum design using FEM, however, may take a very long time and be very hard to take inlet and outlet locations as design variables. In this paper, the acoustic performance of reactive type single expansion chamber muffler is predicted using higher order mode theory. The sensitivity analysis of transmission loss with respect to the location of inlet and outlet is suggested. And the acoustic power transmission coefficient for a frequency of interest is used as cost function. Optimum location of inlet and outlet is determined to minimize cost function by using SUMT algorithm.

  • PDF

Shape optimization of steel reinforced concrete beams

  • Babu Narayan, K.S.;Venkataramana, Katta
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.317-330
    • /
    • 2007
  • Steel reinforced concrete is perhaps the most versatile and widely used construction material. The versatility is attributed to mouldability of concrete to any conceivable shape. The inherent property of cracking of concrete is the reason for its low tensile strength and hence the design approach of RCC sections in flexure adopts the cracked section theory where in concrete in tension zone is ignored. Means, modes and methods of exploitation of concrete strength by conceiving shapes other than rectangular whereby ineffective concrete in tension zone is reduced and incorporated in compression zone where it is effective needs consideration. Shape optimization of beams is attempted in this analytical investigation employing Sequential Unconstrained Minimization Technique (SUMT). The results clearly show that trapezoidal beams happen to be less costlier than their rectangular counterparts, their usage needs serious reconsideration by the designers.

A Computer method in Economical Design of Conductor Sizes of Distribution Lines (전자계산기에 의한 배전선료전선 단면적의 경제적 설계법)

  • Young Moon Park
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.107-110
    • /
    • 1975
  • This paper describes computational algorithms and a computer program for optimum determinations of wire conductor sizes of radial or tree-type distibution lones with given constraints. Here, The objective function is defined as the total summation of the volume or weight of respective conductor materials required for buildingup the entire distributing system. Four categories of constraints are applied to the obiective function. That is, on the respective load points constraint is imposed by a specified voltage drop limit, and the respective line elements are capable of carrying the current safely(safety current) and also must maintain the minimum thickness in viewpoint of mechanical strength and legal requirements. And finally, the conductor sizes have to be selected among the standardized size levels of the products. These kinds of optimization problems cannot be solved by the ordinary optimization tediniques such as the Linear Programming Method, SUMT Technique, etc. This paper, therefore, successfully devised the powerful alorithms to solve the problem, using the particular properties or characteristics ingerent to the radial or tree-type distribution system. The computer program developed from the algorithms was applied to several sample systems and shown to be exact and very efficient.

  • PDF