• Title/Summary/Keyword: SOI (silicon-on-insulator)

Search Result 202, Processing Time 0.024 seconds

High-Performance Silicon-on-Insulator Based Dual-Gate Ion-Sensitive Field Effect Transistor with Flexible Polyimide Substrate-based Extended Gate (유연한 폴리이미드 기판 위에 구현된 확장형 게이트를 갖는 Silicon-on-Insulator 기반 고성능 이중게이트 이온 감지 전계 효과 트랜지스터)

  • Lim, Cheol-Min;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.698-703
    • /
    • 2015
  • In this study, we fabricated the dual gate (DG) ion-sensitive field-effect-transistor (ISFET) with flexible polyimide (PI) extended gate (EG). The DG ISFETs significantly enhanced the sensitivity of pH in electrolytes from 60 mV/pH to 1152.17 mV/pH and effectively improved the drift and hysteresis phenomenon. This is attributed to the capacitive coupling effect between top gate and bottom gate insulators of the channel in silicon-on-transistor (SOI) metal-oxide-semiconductor (MOS) FETs. Accordingly, it is expected that the PI-EG based DG-ISFETs is promising technology for high-performance flexible biosensor applications.

A Study on the SOI LDMOS with a Tapered Field Plate (경사진 Field Plate을 갖는 SOI LDMOS에 관한 연구)

  • Na, Jong-Min;Choi, Yearn-Ik
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.367-369
    • /
    • 1995
  • An SOI LDMOS(Silicon-On-Insulator Lateral Double diffused MOSPET) with a tapered field plate is proposed and investigated in terms of the breakdown voltage and on-resistance using 2-D simulator, MEDICI. The results of conventional SOI LDMOS with a stepped field plate are reported for the comparison. Simulated breakdown voltage of the proposed LDMOS is found to be higher than that of conventional LDMOS since surface electric field can be reduced due to the field plate over the tapered oxide. On-resistance of proposed LDMOS is found to be lower than that of conventional LDMOS by 10%.

  • PDF

Temperature Dependence of Electrical Parameters of Silicon-on-Insulator Triple Gate n-Channel Fin Field Effect Transistor

  • Boukortt, Nour El Islam;Hadri, Baghdad;Caddemi, Alina;Crupi, Giovanni;Patane, Salvatore
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.329-334
    • /
    • 2016
  • In this work, the temperature dependence of electrical parameters of nanoscale SOI (silicon-on-insulator) TG (triple gate) n-FinFET (n-channel Fin field effect transistor) was investigated. Numerical device simulator $ATLAS^{TM}$ was used to construct, examine, and simulate the structure in three dimensions with different models. The drain current, transconductance, threshold voltage, subthreshold swing, leakage current, drain induced barrier lowering, and on/off current ratio were studied in various biasing configurations. The temperature dependence of the main electrical parameters of a SOI TG n-FinFET was analyzed and discussed. Increased temperature led to degraded performance of some basic parameters such as subthreshold swing, transconductance, on-current, and leakage current. These results might be useful for further development of devises to strongly down-scale the manufacturing process.

A simple analytical model for deriving the threshold voltage of a SOI type symmetric DG-MOSFET (SOI형 대칭 DG MOSFET의 문턱전압 도출에 대한 간편한 해석적 모델)

  • Lee, Jung-Ho;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.16-23
    • /
    • 2007
  • For a fully depleted SOI type symmetric double gate MOSFET, a simple expression for the threshold voltage has been derived in a closed-form To solve analytically the 2D Poisson's equation in a silicon body, the two-dimensional potential distribution is assumed approximately as a polynomial of fourth-order of x, vertical coordinate perpendicular to the silicon channel. From the derived expression for the surface potential, the threshold voltage can be obtained as a simple closed-form. Simulation result shows that the threshold voltage is exponentially dependent on channel length for the range of channel length up to $0.01\;[{\mu}m]$.

Characteristics of capacitorless 1T-DRAM on SGOI substrate with thermal annealing process

  • Jeong, Seung-Min;Kim, Min-Su;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.202-202
    • /
    • 2010
  • 최근 반도체 소자의 미세화에 따라, 단채널 효과에 의한 누설전류 및 소비전력증가 등이 문제가 되고 있다. DRAM의 경우, 캐패시터 영역의 축소문제가 소자집적화를 방해하는 요소로 작용하고 있다. 1T-DRAM은 기존의 DRAM과 달리 캐패시터 영역을 없애고 상부실리콘의 중성영역에 전하를 저장함으로써 소자집적화에 구조적인 이점을 갖는다. 또한 silicon-on-insulator (SOI) 기판을 이용할 경우, 뛰어난 전기적 절연 특성과 기생 정전용량의 감소, 소자의 저전력화를 실현할 수 있다. 본 연구에서는 silicon-germanium-on-insulator (SGOI) 기판을 이용한 1T-DRAM의 열처리온도에 따른 특성 변화를 평가하였다. 기존의 SOI 기판을 이용한 1T-DRAM과 달리, SGOI 기판을 사용할 경우, strained-Si 층과 relaxed-SiGe 층간의 격자상수 차에 의한 캐리어 이동도의 증가효과를 기대할 수 있다. 하지만 열처리 시, SiGe층의 Ge 확산으로 인해 상부실리콘 및 SiGe 층의 두께를 변화시켜, 소자의 특성에 영향을 줄 수 있다. 열처리는 급속 열처리 공정을 통해 $850^{\circ}C$$1000^{\circ}C$로 나누어 30초 동안 N2/O2 분위기에서 진행하였다. 그리고 Programming/Erasing (P/E)에 따라 달라지는 전류의 차를 감지하여 제작된 1T-DRAM의 메모리 특성을 평가하였다.

  • PDF

Properties of Photo Detector using SOI NMOSFET (SOI NMOSFET을 이용한 Photo Detector의 특성)

  • 김종준;정두연;이종호;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.583-590
    • /
    • 2002
  • In this paper, a new Silicon on Insulator (SOI)-based photodetector was proposed, and its basic operation principle was explained. Fabrication steps of the detector are compatible with those of conventional SOI CMOS technology. With the proposed structure, RGB (Read, Green, Blue) which are three primary colors of light can be realized without using any organic color filters. It was shown that the characteristics of the SOI-based detector are better than those of bulk-based detector. To see the response characteristics to the green (G) among RGB, SOI and bulk NMOSFETS were fabricated using $1.5\mu m$ CMOS technology and characterized. We obtained optimum optical response characteristics at $V_{GS}=0.35 V$ in NMOSFET with threshold voltage of 0.72 V. Drain bias should be less than about 1.5 V to avoid any problem from floating body effect, since the body of the SOI NMOSFET was floated. The SOI and the bulk NMOSFETS shown maximum drain currents at the wavelengths of incident light around 550 nm and 750 nm, respectively. Therefore the SOI detector is more suitable for the G color detector.

A Study on the Current Kink Effect in NMOSFET SOI Device with the Varying Gate Oxide Thickness (NMOSFET SOI 소자에서 부분적 게이트 산화막 두께 변화에 의한 돌연 전류 효과 고찰)

  • 한명석;이충근홍신남
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.545-548
    • /
    • 1998
  • Thin film SOI(Silicon-On-Insulator) devices exhibit floating body effect. In this paper, SOI NMOSFET is proposed to solve this problem. Some part of gate oxide was considered to be 30nm~80nm thicker than the other normal gate oxide and simulated with TSUPREM-4. The I-V characteristics were simulated with 2D MEDICI mesh. Since part of gate oxide has different oxide thickness in proposed device, the gate electric field strength is not the same throught the gate and consequently the reduction of current kink effect is occurred.

  • PDF

The $ Si-SiO_2$ interface structure of a SIMOX SOI formed by 100keV $O^+$ ion beam (100 keV $O^+$ 이온 빔에 의한 SIMOX SOI의 $ Si-SiO_2$계면 구조)

  • 김영필;최시경;김현경;문대원
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • - The Si-$SiO_2$ interface of silicon on insulator (SOI) formed by 100 keV $O^+$ was ohserved using high resolution transmission electron microscopy (HRTEM), before and after annealing. The interface of as-implanted sample, ~$5\times 10^{17}\textrm{cm}^{-2}O^+$ implanted at $550^{\circ}C$ was very rough and it has many defectsoxide precipitate, stacking fault, coesite $SiO_2$ etc. However, the interface became flat by high temperature annealing at $1300^{\circ}C$ for 4 hour. It's roughness, observed by HRTEM, was comparable to the interface roughness of 3 keV $O_2^\;+$ ion beam oxide and -6 nm gate oxide formed by thermal oxidation.

  • PDF