• Title/Summary/Keyword: SIFT(Scale Invariant Feature Transform)

Search Result 145, Processing Time 0.022 seconds

MEGH: A New Affine Invariant Descriptor

  • Dong, Xiaojie;Liu, Erqi;Yang, Jie;Wu, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1690-1704
    • /
    • 2013
  • An affine invariant descriptor is proposed, which is able to well represent the affine covariant regions. Estimating main orientation is still problematic in many existing method, such as SIFT (scale invariant feature transform) and SURF (speeded up robust features). Instead of aligning the estimated main orientation, in this paper ellipse orientation is directly used. According to ellipse orientation, affine covariant regions are firstly divided into 4 sub-regions with equal angles. Since affine covariant regions are divided from the ellipse orientation, the divided sub-regions are rotation invariant regardless the rotation, if any, of ellipse. Meanwhile, the affine covariant regions are normalized into a circular region. In the end, the gradients of pixels in the circular region are calculated and the partition-based descriptor is created by using the gradients. Compared with the existing descriptors including MROGH, SIFT, GLOH, PCA-SIFT and spin images, the proposed descriptor demonstrates superior performance according to extensive experiments.

Image-based Image Retrieval System Using Duplicated Point of PCA-SIFT (PCA-SIFT의 차원 중복점을 이용한 이미지 기반 이미지 검색 시스템)

  • Choi, GiRyong;Jung, Hye-Wuk;Lee, Jee-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.275-279
    • /
    • 2013
  • Recently, as multimedia information becomes popular, there are many studies to retrieve images based on images in the web. However, it is hard to find the matching images which users want to find because of various patterns in images. In this paper, we suggest an efficient images retrieval system based on images for finding products in internet shopping malls. We extract features for image retrieval by using SIFT (Scale Invariant Feature Transform) algorithm, repeat keypoint matching in various dimension by using PCA-SIFT, and find the image which users search for by combining them. To verify efficiency of the proposed method, we compare the performance of our approach with that of SIFT and PCA-SIFT by using images with various patterns. We verify that the proposed method shows the best distinction in the case that product labels are not included in images.

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences (공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

Feature-based Image Analysis for Object Recognition on Satellite Photograph (인공위성 영상의 객체인식을 위한 영상 특징 분석)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • This paper presents a system for image matching and recognition based on image feature detection and description techniques from artificial satellite photographs. We propose some kind of parameters from the varied environmental elements happen by image handling process. The essential point of this experiment is analyzes that affects match rate and recognition accuracy when to change of state of each parameter. The proposed system is basically inspired by Lowe's SIFT(Scale-Invariant Transform Feature) algorithm. The descriptors extracted from local affine invariant regions are saved into database, which are defined by k-means performed on the 128-dimensional descriptor vectors on an artificial satellite photographs from Google earth. And then, a label is attached to each cluster of the feature database and acts as guidance for an appeared building's information in the scene from camera. This experiment shows the various parameters and compares the affected results by changing parameters for the process of image matching and recognition. Finally, the implementation and the experimental results for several requests are shown.

  • PDF

A Post-Verification Method of Near-Duplicate Image Detection using SIFT Descriptor Binarization (SIFT 기술자 이진화를 이용한 근-복사 이미지 검출 후-검증 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • In recent years, as near-duplicate image has been increasing explosively by the spread of Internet and image-editing technology that allows easy access to image contents, related research has been done briskly. However, BoF (Bag-of-Feature), the most frequently used method for near-duplicate image detection, can cause problems that distinguish the same features from different features or the different features from same features in the quantization process of approximating a high-level local features to low-level. Therefore, a post-verification method for BoF is required to overcome the limitation of vector quantization. In this paper, we proposed and analyzed the performance of a post-verification method for BoF, which converts SIFT (Scale Invariant Feature Transform) descriptors into 128 bits binary codes and compares binary distance regarding of a short ranked list by BoF using the codes. Through an experiment using 1500 original images, it was shown that the near-duplicate detection accuracy was improved by approximately 4% over the previous BoF method.

A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera (단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구)

  • Jung, Dae-Seop;Choi, Jong-Hoon;Jang, Chul-Woong;Jang, Mun-Suk;Kong, Jung-Shik;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform (자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘)

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF

A Real-time Vision-based Page Recognition and Markerless Tracking in DigilogBook (디지로그북에서의 비전 기반 실시간 페이지 인식 및 마커리스 추적 방법)

  • Kim, Ki-Young;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.493-496
    • /
    • 2009
  • Many AR (Augmented Reality) applications have been interested in a marker-less tracking since the tracking methods give camera poses without attaching explicit markers. In this paper, we propose a new marker-less page recognition and tracking algorithm for an AR book application such as DigilogBook. The proposed method only requires orthogonal images of pages, which need not to be trained for a long time, and the algorithm works in real-time. The page recognition is done in two steps by using SIFT (Scale Invariant Feature Transform) descriptors and the comparison evaluation function. And also, the method provides real-time tracking with 25fps ~ 30fps by separating the page recognition and the frame-to-frame matching into two multi-cores. The proposed algorithm will be extended to various AR applications that require multiple objects tracking.

  • PDF

Automatic Registration Method for EO/IR Satellite Image Using Modified SIFT and Block-Processing (Modified SIFT와 블록프로세싱을 이용한 적외선과 광학 위성영상의 자동정합기법)

  • Lee, Kang-Hoon;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • A new registration method for IR image and EO image is proposed in this paper. IR sensor is applicable to many area because it absorbs thermal radiation energy unlike EO sensor does. However, IR sensor has difficulty to extract and match features due to low contrast compared to EO image. In order to register both images, we used modified SIFT(Scale Invariant Feature Transform) and block processing to increase feature distinctiveness. To remove outlier, we applied RANSAC(RANdom SAample Concensus) for each block. Finally, we unified matching features into single coordinate system and remove outlier again. We used 3~5um range IR image, and our experiment result showed good robustness in registration with IR image.