DOI QR코드

DOI QR Code

Automatic Registration Method for EO/IR Satellite Image Using Modified SIFT and Block-Processing

Modified SIFT와 블록프로세싱을 이용한 적외선과 광학 위성영상의 자동정합기법

  • 이강훈 (광주과학기술원 기전공학부 신호 및 영상처리 연구실) ;
  • 최태선 (광주과학기술원 기전공학부)
  • Received : 2011.07.25
  • Accepted : 2011.08.27
  • Published : 2011.09.30

Abstract

A new registration method for IR image and EO image is proposed in this paper. IR sensor is applicable to many area because it absorbs thermal radiation energy unlike EO sensor does. However, IR sensor has difficulty to extract and match features due to low contrast compared to EO image. In order to register both images, we used modified SIFT(Scale Invariant Feature Transform) and block processing to increase feature distinctiveness. To remove outlier, we applied RANSAC(RANdom SAample Concensus) for each block. Finally, we unified matching features into single coordinate system and remove outlier again. We used 3~5um range IR image, and our experiment result showed good robustness in registration with IR image.

본 논문에서는 적외선 위성영상과 광학 위성영상을 위한 정합방법을 제안하였다. 적외선 영상은 물체에서 방사하는 열에너지를 측정한 것으로, 광학 영상과는 다른 정보를 보여주는 장점으로 많은 분야에 응용된다. 하지만 적외선 영상은 대비가 광학 영상에 비해 낮아, 영상 정합을 위한 특징점 추출 및 매칭을 하기가 어렵다. 이를 극복하기 위해, Modifed SIFT(Scale Invariant Feature Transform)를 사용하여 특징점을 추출 및 매칭하였다. 또한 특징점의 상대적 변별력을 증가시키기 위해, 영상을 블록화해서 Modified SIFT와 RANSAC (RANdom SAample Concensus)을 적용하였다. 마지막으로 오매칭이 있는 블록의 특징점을 제거하기 위해, 각 블록에서 추출된 특징점을 원 영상의 좌표계로 통합해 RANSAC을 다시 한 번 적용하였다. 실험에 사용된 적외선 영상의 파장대역은 3~5um이며, 실험결과 제안된 방법은 적외선과 광학 영상정합에 강인한 성능을 보였다.

Keywords