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Abstract 
 

An affine invariant descriptor is proposed, which is able to well represent the affine covariant 

regions. Estimating main orientation is still problematic in many existing method, such as 

SIFT (scale invariant feature transform) and SURF (speeded up robust features). Instead of 

aligning the estimated main orientation, in this paper ellipse orientation is directly used. 

According to ellipse orientation, affine covariant regions are firstly divided into 4 sub-regions 

with equal angles. Since affine covariant regions are divided from the ellipse orientation, the 

divided sub-regions are rotation invariant regardless the rotation, if any, of ellipse. Meanwhile, 

the affine covariant regions are normalized into a circular region. In the end, the gradients of 

pixels in the circular region are calculated and the partition-based descriptor is created by 

using the gradients. Compared with the existing descriptors including MROGH, SIFT, GLOH, 

PCA-SIFT and spin images, the proposed descriptor demonstrates superior performance 

according to extensive experiments. 
 

 

Keywords: Local Descriptor, SIFT, Image Registration, Performance Evaluation 

mailto:everyth_ok@yahoo.com.cn
mailto:t.m.chen@swansea.ac.uk


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013                                          1691 

Copyright ⓒ 2013 KSII 

1. Introduction 

Local features that are robust to photometric transformations and geometric transformations 

are crucial to many image understanding and computer vision applications [1]. Such local 

features basically consist of detecting interest features in an affine covariant manner and 

describing the characteristic structure of a local image region around the detected features. 

In recent years, a number of feature detectors extracting interest regions have been 

investigated, such as MSER (maximally stable extremal region) detector [2], EBR 

(edge-based region) detector and IBR (intensity extrema-based region) detector [3], 

Harris-Affine and Hessian-Affine detectors [4] and salient region detector [5]. Comprehensive 

study on these existing detectors indicates that MSER and Hessian-Affine are the two best 

detectors [6]. 

After the regions of interest are detected, a descriptor is needed to describe the characteristic 

structure of the detected regions. Many techniques for describing local image regions have 

been developed. One of the popular descriptors is SIFT [7]. Inspired by the discriminability 

and robustness of the SIFT, lots of variants have been proposed, such as GLOH (gradient 

location and orientation histogram) [8], SURF [9], PCA-SIFT (principal component 

analysis-SIFT) [10], DAISY [11] and PPD (phase-space partition based descriptor) [12]. 

According to the study results of [8], SIFT and GLOH have been demonstrated to be superior 

to others used in literature on a number of measures. 

A good local image descriptor is expected to have high discriminative ability and to be 

robust to various image transformations, such as scaling, rotation, viewpoint changes, image 

blur, JPEG compression and illumination changes. 

To achieve rotational invariance, the widely adopted approach is to determine a reference 

orientation for each local region around its interest point, such as SIFT, SURF and DAISY. 

Although the gradient histogram representation is robust in somehow to deformations of the 

image pattern, estimation of the reference orientation, according to the properties of local area, 

is still problematic. It affects the performance of the local descriptor [13, 14]. More detailed 

study can be seen in [13]. 

To address the problem mentioned above, a new feature descriptor is proposed in this paper, 

MEGH (Multi-support region Ellipse-partition based Gradient Histogram). In the proposed 

method, the affine covariant region is divided into 4 sub-regions according to ellipse 

orientation (the major axis orientation). Meanwhile, the affine covariant regions are 

normalized to the circular regions. Then, the gradients of pixels in circular region are 

computed in a locally rotation invariant coordinate system. Finally, the descriptor is created by 

gradient histogram based on the sub-regions. Compared with the existing descriptors 

including MROGH, SIFT, GLOH, PCA-SIFT and spin images, the proposed descriptor shows 

superior discriminability according to extensive experiments. 

The main contribution of this paper is that a special image segmentation based on affine 

covariant region is proposed. An affine covariant region is divided into 4 sub-regions from 

ellipse orientation with equal angles. To achieve invariance to scaling, each affine covariant 

region is normalized to a canonic region with a common size. To further improve the 

discriminative ability of the proposed descriptor, the scheme of utilizing multi-support region 

as [13, 17] is also followed in this paper. 

The rest of the paper is organized as follows: Section 2 discusses the related work. The 

proposed algorithm is presented in Section 3. Experiments and conclusions are given in 
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Section 4 and 5 respectively. 

2. Related Work 

There are two major approaches to construct rotation-invariant descriptors. One approach is to 

rotate the normalized region to align a reference orientation [7, 9, 10, 12, 15] and then the 

feature descriptor is built up. The other is to directly design rotation-invariant descriptor [13, 

14,16]. A brief review is given below to explore their advantages and disadvantages which 

inspire the newly proposed descriptor in this paper. Comprehensive reviews can be found in 

[8]. 

SIFT [7] is regarded as one of the most popular rotation invariant feature descriptor. SIFT 

description of an image is presented as 3D smoothed histogram of gradient locations and 

orientations. The height of bin represents the weighted sum of gradient magnitude in each area 

and in each gradient orientation. To encode more spatial information, a square image patch 

around an interest point is subdivided into 16 smaller squares. And then, the gradient 

orientation is quantized into 8 bins in each smaller square. For each smaller square, an 

orientation based histogram is formed. All these orientation histograms over all smaller 

squares are concatenated together to construct the SIFT descriptor. Therefore, the SIFT is a 

128D feature vector. Although the gradient orientation histogram provides stability against 

deformations of the image pattern, the SIFT still requires an accurate dominant orientation as a 

reference orientation for local image rotation alignment. The dominant orientation is perhaps 

more than one for each interest point. 

In order to further improve its efficiency and effectiveness, a number of extensions of SIFT 

have been developed. PCA-SIFT descriptor introduced by Ken and Sukthankar [10] is a 

simplified version of the SIFT, which further processes gradient orientation values in SIFT 

through PCA sub-space analysis. GLOH descriptor is another extension of the SIFT. Instead 

of computing the histogram in the square grid, GLOH is calculated along log-polar location 

grids and the dimension of descriptor is reduced by PCA. PPD descriptor [12] reduces the 

complexity of standard SIFT and improves its discriminability. PPD adopts region-wise 

gradient statistics in phase space and also saves interpolation normally used by common SIFT. 

To achieve the rotational invariance, SIFT and its variants rely on the estimation of 

dominant orientation. However, as discussed in [13], the dominant orientation estimation 

tends to be unreliable and thus it affects the performance of the local descriptor. 

Directly designing rotation-invariant descriptor is another category of methods. The 

intensity-domain spin image [14] is a 2D histogram of distances between the pixel in the 

normalized patch and the center point of the normalized patch and intensities. Since the 

distance and the intensity value are invariant to orthogonal transformations of image 

neighborhood, the intensity-domain spin image itself is rotation-invariant. RIFT [14] 

(rotation-invariant feature transform) is another descriptor that achieves rotation invariance 

without requiring a reference orientation. A circular patch is built at an interest point and then 

is subdivided into 4 rings of equal width. To maintain rotation invariance, the relative 

orientation between the gradient orientation and the direction which points outward from the 

center of the circular patch is computed at each pixel. For each ring, 8 orientation histogram is 

computed. Thus, RIFT is a 32-dimension feature vector. 

A good method for constructing local feature descriptor [13] is proposed and two 

descriptors, MROGH (multi-support region order-based gradient histogram) and MRRID 

(multi-support region rotation and intensity monotonic invariant descriptor), are presented. 

Pooling local features based on intensity order is the key idea of the construction method 
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which is just to aggregate the relevant pixels together. The intensity order and the feature 

pooling scheme are both rotation invariant, thus no reference orientation is required in both 

MROGH and MRRID descriptors. More importantly, both MROGH and MRRID achieve 

better performance than state-of-the-art descriptors. In addition, to improve the discriminative 

ability of the descriptor, the scheme of multiple support regions is used in [13, 17]. 

3. Proposed Descriptor 

The key idea of our method is to directly segment the affine covariant region according to 

ellipse orientation. According to ellipse orientation, the affine covariant region is firstly 

divided into 4 sub-regions with equal angles. Thus, it is unnecessary to explicitly estimate the 

dominant orientation as other method such as SIFT. Meanwhile, the affine covariant regions 

are normalized to a fixed circular region to obtain affine invariance. Then, the gradients of all 

pixels in the normalized region are computed. In the end, the descriptor is calculated by using 

the gradients according to the divided sub-regions.  

3.1 Sub-region Construction 

Given the canonical equation of an arbitrary ellipse with center
CX . 

 

( ) ( ) 1T

C CX X A X X                                                   (1) 

 

where 
 

d e
A

e f

 
  
 

                                                            (2) 

 

A  is a real symmetric matrix. Then, the orientation of sub-major axis of the ellipse can be 

determined as: 

 

11 2
tan

2

e

d f
 


                                                      (3) 

 

From ellipse orientation angle , an ellipse is segmented into N  sub-regions, where N  is  

 

θellipse orientation angle  

S1 

S2 

S3 

S4 

 
Fig. 1. An ellipse divided into 4 sub-regions 
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set to 4 in this paper. Each sub-region is one-fourth of the ellipse. Since the partition of ellipse 

is carried out from ellipse orientation, the size of each sub-region is always one fourth of 

original ellipse regardless the rotation, if any, of ellipse. An example of the divided 

sub-regions is shown in Fig. 1. 

Given a pixel X denoted by  ,
T

x y in the ellipse, its polar angle  is: 

 
1tan ( / )y x                                                         (4) 

 

Depending on the location of the pixel in affine covariant region, the relation between the 

polar angle of each pixel and the ellipse orientation is summarized in Table 1. 
 

Table 1. Relation between the polar angle of each pixel and the ellipse orientation 

Sub-region: S1 
2


      Sub-region: S3 

3

2


        

Sub-region: S2 2


        

Sub-region: S4 

3 / 2 2

0

or

   

 

  

 

 

3.2 Affine Invariant Regions 

The detected affine covariant region may have different size and different orientation by using 

various region detectors, such as the Hessian-Affine/Harris-affine detector. Similar to many 

other local descriptors, we also normalized the affine covariant regions to the circular regions 

in order to obtain affine invariance, which is a circular region of radius 20.5 pixels [8, 13]. If 

the detected region is larger than the normalized region, a Gaussian kernel should be used to 

smooth the image of the detected region. The standard derivation of Gaussian kernel is set to 

be the size ratio of the detected region and the normalized region [8]. 

Given the center of ellipse as the origin of coordinate, any pixel X in the affine covariant 

region satisfies: 

 

1TX AX                                                                  (5) 

 

Pixel 'X in the normalized circular region satisfies: 

 
2' 'TX X r                                                              (6) 

 

where r is the radius of normalized circular region. From Eq. (5) and Eq. (6), we have: 

 
1

12
1

' 'X A X T X
r


                                                     (7) 

 

Therefore, the intensity value of each pixel 'X in normalized circular region can be calculated 

based on its corresponding pixel X in affine covariant region. Eq. (7) cannot guarantee there is 

always an X in the discrete coordinate corresponding to 'X . If that is the case, bilinear 

interpolation is applied to obtain the approximate location. Example of normalized circular 

region is shown in Fig. 2. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 7, Jul. 2013                                          1695 

Copyright ⓒ 2013 KSII 

                              
(a) Affine covariant region        (b) Normalized circular region 

Fig. 2. Affine covariant region and its normalized circular region  

3.3 Local Image Descriptor 

In order to obtain the rotation invariant gradient measurement, a rotation invariant local 

coordinate system is constructed for each pixel. Given the center of the circular region ' 'P and 

any one of the pixels inside the region ' 'iX , a local coordinate system for
iX can be constructed, 

as shown in Fig. 3. Apparently, gradient measurement based on such local coordinate system 

will be rotation invariant. The gradient is calculated accordingly as Eq. (8) and (9). 

 

1

iX

 

3

iX  

7

iX  

x

 

y

 

P

iX  

5

iX  

 

  
Fig. 3. Rotation invariant local coordinate system 

 
1 5( ) ( ) ( )x i i iD X I X I X                                                   (8) 

 

  3 7( ) ( ) ( )y i i iD X I X I X                                                  (9) 

 

where , 1,3,5,7j

iX j  are neighbor pixels of iX along x-axis and y-axis, and ( )j

iI X denotes the 

intensity of pixel j

iX . The gradient magnitude ( )im X and orientation ( )iX are obtained by: 

 

2 2( ) ( ) ( )i x i y im X D X D X                                         (10) 

 
1( ) tan ( ( ) / ( ))i y i x iX D X D X                                      (11) 

 

( ) [0,2 )iX  which is quantized into 8 bins, (2 / ) ( 1), 1,2, ,idir d i i d    (d=8 in this 

paper). And then, the gradient of iX is transformed into a d-dimensional vector, denoted 

as 1 2( ) ( , , , )G G G

G i dF X f f f , where, 
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(2 / ( ( ), ))
( ) , ( ( ), ) 2 /

2 /

0,

i j

G i i j
j

d X dir
m X if X dir d

f d

otherwise

  
  






 



              (12) 

 

( ( ), )i jX dir  is the difference between ( )iX and jdir . 

Gradient of the pixels in each sub-region are summed together to become feature vector for 

every sub-region respectively. Then, the feature vectors of all sub-regions are concatenated 

together to represent this normalized region,  
 

( ) ( ( 1), ( 2), ( 3), ( 4))D R F S F S F S F S                                    (13) 

 

where ( )F Si is the feature vector of each sub-region Si , i.e., 

 

( ) ( )
i

G

X R

F Si F X


                                                       (14) 

 

In order to enhance the discriminability of descriptor, the method of utilizing multi-support 

region as [13, 17] is also followed to construct the proposed descriptor. The number of the 

multi-support region is 4 in this paper.  

Feature vectors calculated from all support regions are concatenated together to form our 

final descriptor vector: 1 2 3 4{ , , , }D D D D .  

4. Experiments 

4.1 Data Set 

Benchmark dataset [18] is employed in this paper. These images are either from planar scene 

or captured by a fixed position camera during acquisition. Therefore, the relationship between 

transformed images and reference image can be modeled by a 2D homography matrix. 

Moreover, the dataset also provides homography for provided images. Fig. 4 shows the data 

set. The types of transformations include changing viewing angle, scaling, rotation, image 

blurring, changing illumination, and image compression. The reference image is the 1st 

column image (1st), the transformed images are these from the 2nd to 5th column image (2nd 

to 5th). 

4.2 Region Detector 

The relative performance among different descriptors is consistent with different feature 

detectors [13]. Since Hessian-affine detector can detect blob-like points, which are less likely 

at the positions of depth-difference pixel points and favor local planarity and smoothness 

assumption [12], it is selected in our experiments. 

4.3 Similarity Measurement 

For region matching, three strategies proposed in [8] are nearest neighbor (NN), nearest 

neighbor distance ratio (NNDR) and threshold. Although these three matching methods are 

functionally different, their ranking results of the performances of the various descriptors are 

virtually the same [8]. The strategy of NN was adopted in this paper. 
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(a) Image blur (tree) 

 

(b) Image blur (bikes) 

 

(c) Illumination changes (leuven) 

 

(d) JPEG compression (ubc) 
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(e) Viewpoint changes (graf) 
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(f) Viewpoint changes (wall) 

 

(g) Rotation and scale changes (boat) 

Fig. 4. Data set 
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4.4 Evaluation  

The metric proposed by Krystian Mikolajczy and Cordelia Schmid is adopted to evaluate the 

performance of MEGH. Two values, recall and 1-precision, are employed as the evaluation 

criteria which are based on the numbers of correct matches and false matches by checking the 

reference image and transformed images [8]. Recall is the ratio of the correctly matched 

number to the number of corresponding regions. 1- precision is the ratio of the number of false 

matches to the total number of matches. The curve of Recall v.s. 1-Precision (i.e. 

Precision-Recall) [8] is drawn by changing the similarity measurement threshold.  

4.5 Experimental Results 

In our experiments, the proposed method is compared against SIFT, GLOH, PCA-SIFT, 

spin-image (denoted as SPIN), and MROGH. The implements of these benchmark descriptors 

follow the codes provided in [18, 19].  

For the case of image blurring, Fig. 5-6 show the results. The blur degree increases 

gradually from the 2nd to 5th images from Fig. 4 (a, b). From Fig. 5, it is seen that MEGH 

achieves the best performance. From Fig. 6, it is shown that the proposed descriptor along 

with MROGH achieves better performance than other descriptors while it is slightly worse 

than MROGH. 
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Fig. 5. Performance for the case of image blurring - tree 
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 (c) Feature matching between 1st and 4th       (d) Feature matching between 1st and 5th 

Fig. 6. Performance for the case of image blurring - bikes 
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Fig. 7. Performance for the case of illumination change – leuven 

Fig. 7 shows the performance for the case of illumination change. The level of illumination 

change gradually becomes larger the 2nd to 5th images from Fig. 4(c). It is seen that overall 

MEGH performs better than other descriptors. 
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Fig. 8 shows the performance for the case of JPEG image compression. The compression 

ratio increases gradually from the 2nd to 5th images from Fig. 4(d). It is shown that MEGH 

achieves the best performance. 
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Fig. 8. Performance for the case of JPEG image compression - ubc 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll 

1-precision

 

 

MEGH

MROGH

GLOH

SIFT

PCA-SIFT

SPIN

          
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll 

1-precision

 

 

MEGH

MROGH

GLOH

SIFT

PCA-SIFT

SPIN

 
 (a) Feature matching between 1st and 2nd     (b) Feature matching between 1st and 3rd 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll 

1-precision

 

 

MEGH

MROGH

GLOH

SIFT

PCA-SIFT

SPIN

            
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll 

1-precision

 

 

MEGH

MROGH

GLOH

SIFT

PCA-SIFT

SPIN

 
 (c) Feature matching between 1st and 4th       (d) Feature matching between 1st and 5th 

Fig. 9. Performance for the case of viewing angle change - graft 
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Fig. 9-10 show the performance for the case of viewing angle change. It is shown that the 

performance of the proposed method is lower than MROGH and higher than any other 

descriptors. 
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Fig. 10. Performance for the case of viewing angle change - wall  
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Fig. 11. Performance for the case of image scaling and rotation – boat 
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Fig. 11 shows the performance for the case of image scaling and rotation. It is shown that 

the performance of the proposed method is overall lower than MROGH and higher than any 

other descriptors. 

From the experiments above, it is seen that there does not exist one descriptor which 

outperforms the other descriptors for all scene types and for all types of transformations. For 

the case of photometric transformations (Fig. 5-8), the proposed method achieves the best 

performance against all compared methods. For the case of geometric transformations, the 

performance of the proposed method is lower than that of MROGH and higher than that of any 

other descriptors. The performance difference between MEGH and MROGH generally 

increases with the severity of the transformations. This is because estimating ellipse affine 

covariant region is sensitive under geometric transformation, particularly, to viewpoint change 

and rotation.  

5. Conclusions 

In this paper, a special image segmentation based on affine covariant region is proposed. The 

proposed feature descriptor MEGH based on image segmentation is presented, which is robust 

to the photometric transformations and geometric transformations.  

Compared with 5 existing descriptors, extensive experiments show that the feature 

descriptor based on ellipse orientation rather than an estimated reference orientation achieves 

better performance.  

In the case of geometric transformations, the proposed segmentation process using ellipse 

orientation is still robust although the performance of MEGH is lower than that of MROGH. 

This is due to an estimation error of the affine invariant region itself.  

Further investigation on the study of the affine covariant region and the incorporation of the 

proposed descriptor into various applications is currently underway. 
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