• Title/Summary/Keyword: SDB(Si-Direct-Bonding)

Search Result 27, Processing Time 0.336 seconds

The Fabrication of SOB SOI Structures with Buried Cavity for Bulk Micro Machining Applications

  • Kim, Jae-Min;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.739-742
    • /
    • 2002
  • This paper described on the fabrication of microstructures by DRIE(deep reactive ion etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing($1000^{\circ}C$, 60 min.), The SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as an accurate thickness control and a good flatness.

  • PDF

Fabrication of 3-Dimensional Microstructures for Bulk Micromachining by SDB and Electrochemical Etch-Stop (SDB와 전기화학적 식각정지에 의한 벌크 마이크로머신용 3차원 미세구조물 제작)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.958-962
    • /
    • 2002
  • This paper reports on the fabrication of free-standing microstructures by DRIE (deep reactive ion etching). SOI (Si-on-insulator) structures with buried cavities are fabricated by SDB (Si-wafer direct bonding) technology and electrochemical etch-stop. The cavity was formed the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the formed cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing (100$0^{\circ}C$, 60 min.), the SDB SOI structure with a accurate thickness and a good roughness was thinned by electrochemical etch-stop in TMAH solution. Finally, it was fabricated free-standing microstructures by DRIE. This result indicates that the fabrication technology of free-standing microstructures by combination SDB, electrochemical etch-stop and DRIE provides a powerful and versatile alternative process for high-performance bulk micromachining in MEMS fields.

Fabrication of a SOI Hall Device Using Si -wafer Dircet Bonding Technology (실리콘기판 직접접합기술을 이용한 SOI 흘 소자의 제작)

  • 정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.86-89
    • /
    • 1994
  • This paper describes the fabrication and basic characteristics of a Si Hall device fabricated on a SOI(Si-on-insulator) structure. In which SOI structure was formed by SOB(Si-wafer direct bonding) technology and the insulator of the SOI structure was used as the dielectrical isolation layer of a Hall device. The Hall voltage and sensitivity of the implemented SDB SOI Hall devices showed good linearity with respectivity to the applied magnetic flux density and supple iud current. The product sensitivity of the SDB SOI Hall device was average 670 V/A$.$T and its value has been increased up to 3 times compared to that of bulk Si with buried layer of 10$\mu\textrm{m}$. Moreover, this device can be used at high-temperature, high-radiation and in corrosive environments.

Fabrication of SDB SOI structure with sealed cavity (Cavity를 갖는 SDB SOI 구조의 제작)

  • 강경두;정수태;주병권;정재훈;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.557-560
    • /
    • 2000
  • Combination of SDB(Si-wafer Direct Bonding) and electrochemical etch-stop in TMAH anisotropic etchant can be used to create a variety of MEMS(Micro Electro Mechanical System). Especially, fabrication of SDB SOI structures using electrochemical etch-stop is accurate method to fabrication of 3D(three-dimensional) microstructures. This paper describes on the fabrication of SDB SOI structures with sealed cavity for MEMS applications and thickness control of active layer on the SDB SOI structure by electrochemical etch-stop. The flatness of fabricated SDB SOI structure is very uniform and can be improved by addition of TMAH to IPA and pyrazine.

  • PDF

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Silicon-Wafer Direct Bonding for Single-Crystal Silicon-on-Insulator Transducers and Circuits (단결정 SOI트랜스듀서 및 회로를 위한 Si직접접합)

  • Chung, Gwiy-Sang;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.131-145
    • /
    • 1992
  • This paper has been described a process technology for the fabrication of Si-on-insulator(SOI) transducers and circuits. The technology utilizes Si-wafer direct bonding(SDB) and mechanical-chemical(M-C) local polishing to create a SOI structure with a high-qualify, uniformly thin layer of single-crystal Si. The electrical and piezoresistive properties of the resultant thin SOI films have been investigated by SOI MOSFET's and cantilever beams, and confirmed comparable to those of bulk Si. Two kinds of pressure transducers using a SOI structure have been proposed. The shifts in sensitivity and offset voltage of the implemented pressure transducers using interfacial $SiO_{2}$ films as the dielectrical isolation layer of piezoresistors were less than -0.2% and +0.15%, respectively, in the temperature range from $-20^{\circ}C$ to $+350^{\circ}C$. In the case of pressure transducers using interfacial $SiO_{2}$ films as an etch-stop layer during the fabrication of thin Si membranes, the pressure sensitivity variation can be controlled to within a standard deviation of ${\pm}2.3%$ from wafer to wafer. From these results, the developed SDB process and the resultant SOI films will offer significant advantages in the fabrication of integrated microtransducers and circuits.

  • PDF

Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop (SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Choi, Sung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • This paper describes a new process technique for batch process of SOI(Si-on-Insulator) structures with buried cavities for MEMS(Micro Electro Mechanical System) applications by SDB(Si-wafer Direct Bonding) technology and electrochemical etch-stop. A low-cost electrochemical etch-stop method is used to control accurately the thickness of SOI. The cavities were made on the upper handling wafer by Si anisotropic etching. Two wafers are bonded with an intermediate insulating oxide layer. After high-temperature annealing($1000^{\circ}C$, 60 min), the SDB SOI structure with buried cavities was thinned by electrochemical etch-stop. The surface of the fabricated SDB SOI structure have more roughness that of lapping and polishing by mechanical method. This SDB SOI structure with buried cavities will provide a powerful and versatile substrate for novel microsensors arid microactuators.

A study on pre-bonding of Si wafer direct bonding at HF pre-treatment (HF 전처리시 Si기판 직접접합의 초기접합에 관한 연구)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.134-140
    • /
    • 2000
  • Si wafer direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electronic devices and MEMS applications. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure. The bonding strength was evaluated by tensile strength method. A bond characteristic on the interface was analyzed by using FT-IR, and surface roughness according to HF concentration was analyzed by AFM. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si-OH$\cdots$(HOH$\cdots$HOH$\cdots$HOH)$\cdots$OH-Si. The pre-bonding strength depends on the HF pre-treatment condition before pre-bonding. (Min : $2.4kgf/cm^2{\sim}$Max : $14.9kgf/cm^2$)

  • PDF

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

Fabrication of a Silicon Hall Sensor for High-temperature Applications (고온용 실리콘 홀 센서의 제작)

  • 정귀상;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$as a dielectrical isolation layer a SDB SOI Hall sensor without pn junction has been fabricated on the Si/ $SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to 30$0^{\circ}C$ the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm$6.7$\times$10$_{-3}$ and $\pm$8.2$\times$10$_{-4}$$^{\circ}C$ respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and high-temperature operation.

  • PDF