• Title/Summary/Keyword: S-measurable function

Search Result 37, Processing Time 0.033 seconds

A poisson equation associated with an integral kernel operator

  • Kang, Soon-Ja
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.367-375
    • /
    • 1996
  • Suppose the kernel function $\kappa$ belongs to $S(R^2)$ and is symmetric such that $ < \otimes x, \kappa >\geq 0$ for all $x \in S'(R)$. Let A be the class of functions f such that the function f is measurable on $S'(R)$ with $\int_{S'(R)}$\mid$f((I + tK)^{\frac{1}{2}}x$\mid$^2d\mu(x) < M$ for some $M > 0$ and for all t > 0, where K is the integral operator with kernel function $\kappa$. We show that the \lambda$-potential $G_Kf$ of f is a weak solution of $(\lambda I - \frac{1}{2} \tilde{\Xi}_{0,2}(\kappa))_u = f$.

  • PDF

THE ANALYTIC FEYNMAN INTEGRAL OVER PATHS ON ABSTRACT WIENER SPACE

  • Yoo, Il
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.93-107
    • /
    • 1995
  • In their paper [2,3], Cameron and Storvick introduced some classes $S"+m$ and of functionals on classical Wiener spaces $C_0[a,b]$. For such functionals, they showed that the analytic Feynman integral exists and they gave some formulas for this integral. Moreover they obtained that the functionals of the form $$ (1.1) F(x) = exp {\int^b_a{\theta(s,x(x))dx} $$ are in S" where they assumbed that the potential $\delta : [a,b] \times R \to C$ satisfies (i) for each $s \in [a,b], \theta(s,\cdot)$ is the Fourier-Stieltjes transform of $\sigma_s \in M(R)$, (ii) for each Borel subset E of $[a,b] \times R, \sigma_s (E^{(s)})$ is a Borel measurable function of s on [a,b], and (iii) the total variation $\Vert \sigma_s \Vert$ of $\sigma_s$ is bounded as a function of s.tion of s.

  • PDF

GENERALIZED SOLUTIONS OF IMPULSIVE CONTROL SYSTEMS CORRESPONDING TO CONTROLS OF BOUNDED VARIATION

  • Shin, Chang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.581-598
    • /
    • 1997
  • This paper is concerned with the impulsive control problem $$ \dot{x}(t) = f(t, x) + g(t, x)\dot{u}(t), t \in [0, T], x(0) = \overline{x}, $$ where u is a possibly discontinuous control function of bounded variation, $f : R \times R^n \mapsto R^n$ is a bounded and Lipschitz continuous function, and $g : R \times R^n \mapsto R^n$ is continuously differentiable w.r.t. the variable x and satisfies $\mid$g(t,\cdot) - g(s,\cdot)$\mid$ \leq \phi(t) - \phi(s)$, for some increasing function $\phi$ and every s < t. We show that the map $u \mapsto x_u$ is Lipschitz continuous when u ranges in the set of step functions whose total variations are uniformly bounded, where $x_u$ is the solution of the impulsive control system corresponding to u. We also define the generalized solution of the impulsive control system corresponding to a measurable control functin of bounded variation.

  • PDF

A NOTE ON SET-VALUED FUZZY INTEGRALS

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.453-456
    • /
    • 2005
  • It is known that the classical Fatou's lemma and Lebesgue convergence theorem do not require the assumption that J1. is finite. In this note, we show that the assumption $\mu$(X) < $\infty$ cannot be replaced with a weaker assumption to prove Fatou's lemma and Lebesgue convergence theorem for a sequence of set-valued measurable function suggested by Zhang and Wang (Fuzzy Sets and Systems 56(1993) 237-241).

SOME ESTIMATES FOR GENERALIZED COMMUTATORS OF MULTILINEAR CALDERÓN-ZYGMUND OPERATORS

  • Honghai Liu;Zengyan Si;Ling Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.541-560
    • /
    • 2023
  • Let T be an m-linear Calderón-Zygmund operator. $T_{{\vec{b}S}}$ is the generalized commutator of T with a class of measurable functions {bi}i=1. In this paper, we will give some new estimates for $T_{{\vec{b}S}}$ when {bi}i=1 belongs to Orlicz-type space and Lipschitz space, respectively.

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM

  • Chung, Jaeyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1157-1169
    • /
    • 2016
  • We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.

A NOTE ON THE W*IN DUAL SPACE

  • Yoon, Ju-Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.277-287
    • /
    • 1996
  • The theory of integration of functions with values in a Banach space has long been a fruitful area of study. In the eight years from 1933 to 1940, seminal papers in this area were written by Bochner, Gelfand, Pettis, Birhoff and Phillips. Out of this flourish of activity, two integrals have proved to be of lasting: the Bochner integral of strongly measurable function. Through the forty years since 1940, the Bochner integral has a thriving prosperous history. But unfortunately nearly forty years had passed until 1976 without a significant improvement after B. J. Pettis's original paper in 1938 [cf. 11].

  • PDF

A Didactical Analysis on Circular Measure (호도법에 관한 교수학적 고찰)

  • Kang, Mee-Kwang
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.355-365
    • /
    • 2011
  • The purpose of this study is to provide mathematical knowledge for supporting the didactical knowledge on circular measure and radian in the high school curriculum. We show that circular measure related to arcs can be mathematically justified as an angular measure and radian is a well defined concept to be able to reconcile the values of trigonometric functions and ones of circular functions, which are real variable functions. Radian has two-fold intrinsic attributes of angular measure and arc measure on the unit circle, in particular, the latter property plays a very important role in simplifying the trigonometric derivatives. To improve students's low academic achievement in trigonometry section, the useful advantage and the background over the introduction of radian should be preferentially taught and recognized to students. We suggest some teaching plans to practice in the class of elementary and middle school for enhancing teachers' and students' understanding of radian.

$L^p$ 공간의 가분성에 관한 연구

  • 김만호
    • The Mathematical Education
    • /
    • v.21 no.3
    • /
    • pp.7-11
    • /
    • 1983
  • A measurable function f defined on a measurable subset A of the real line R is called pth power summable on A if │f│$^{p}$ is integrable on A and the set of all pth power summable functions on A is denoted by L$^{p}$ (A). For each member f in L$^{p}$ (A), we define ∥f∥$_{p}$ =(equation omitted) For real numbers p and q where (equation omitted) and (equation omitted), we discuss the Holder's inequality ∥fg∥$_1$<∥f∥$_{p}$ ∥g∥$_{q}$ , f$\in$L$^{p}$ (A), g$\in$L$^{q}$ (A) and the Minkowski inequality ∥+g∥$_{p}$ <∥f∥$_{p}$ +∥g∥$_{p}$ , f,g$\in$L$^{p}$ (A). In this paper also discuss that L$_{p}$ (A) becomes a metric space with the metric $\rho$ : L$^{p}$ (A) $\times$L$^{p}$ (A) longrightarrow R where $\rho$(f,g)=∥f-g∥$_{p}$ , f,g$\in$L$^{p}$ (A). Then, in this paper prove the Riesz-Fischer theorem, i.e., the space L$^{p}$ (A) is complete and that the space L$^{p}$ (A) is separable.

  • PDF