• 제목/요약/키워드: Rule Set

검색결과 731건 처리시간 0.022초

클래스 초월구를 이용한 프로토타입 기반 분류 (Prototype-Based Classification Using Class Hyperspheres)

  • 이현종;황두성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권10호
    • /
    • pp.483-488
    • /
    • 2016
  • 본 논문은 최근접 이웃 규칙을 이용한 프로토타입을 이용하는 분류 학습을 제안한다. 훈련 데이터가 대표하는 클래스 영역을 초월구로 분할하는데 최근접 이웃규칙을 적용시키며, 초월구는 동일 클래스 데이터들만 포함시킨다. 초월구의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용한다. 제안하는 선택 방법은 클래스 별 프로토타입을 선택하는 그리디 알고리즘으로 설계되며, 대규모 훈련 데이터에 대한 병렬처리가 가능하다. 분류 예측은 최근접 이웃 규칙을 이용하며, 새로운 훈련 데이터는 프로토타입 집합이다. 실험에서 제안하는 방법은 기 연구된 학습 방법에 비해 일반화 성능이 우수하다.

트리거와 점진적 갱신기법을 이용한 연관규칙 탐사의 능동적 후보항목 관리 모델 (An Active Candidate Set Management Model on Association Rule Discovery using Database Trigger and Incremental Update Technique)

  • 황정희;신예호;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권1호
    • /
    • pp.1-14
    • /
    • 2002
  • 연관규칙 탐사는 지지도와 신뢰도를 바탕으로 연관성 있는 강한 항목들을 탐사한다. 탐사된 연관규칙은 장바구니 분석 등과 같이 전자 상거래 및 대형 소매점 등의 판매 패턴에 대한 분석에 유용하게 적용될 수 있다. 이와 같은 연관규칙 탐사는 대규모로 축적되어 트랜잭션 데이터를 대상으로 하는 기법으로서 대규모 데이터에 대한 반복적 스캔연산을 수반한다. 그러므로 매우 높은 연산 부하를 안고 있으며 이로 인해 동적 환경에서 실시간 제한사항을 탐사에 대한 시도를 하지 못하고 있다. 따라서 이 논문에서는 연관규칙 탐사의 비 실시간적 제한사항을 위하여 트리거와 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제안하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제한하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 연산의 구현 모델을 제시하고 이의 구현 및 실험을 통해 성능 특성을 분석하였다.

연속발생 데이터를 위한 실시간 데이터 마이닝 기법 (A Real-Time Data Mining for Stream Data Sets)

  • 김진화;민진영
    • 한국경영과학회지
    • /
    • 제29권4호
    • /
    • pp.41-60
    • /
    • 2004
  • A stream data is a data set that is accumulated to the data storage from a data source over time continuously. The size of this data set, in many cases. becomes increasingly large over time. To mine information from this massive data. it takes much resource such as storage, memory and time. These unique characteristics of the stream data make it difficult and expensive to use this large size data accumulated over time. Otherwise. if we use only recent or part of a whole data to mine information or pattern. there can be loss of information. which may be useful. To avoid this problem. we suggest a method that efficiently accumulates information. in the form of rule sets. over time. It takes much smaller storage compared to traditional mining methods. These accumulated rule sets are used as prediction models in the future. Based on theories of ensemble approaches. combination of many prediction models. in the form of systematically merged rule sets in this study. is better than one prediction model in performance. This study uses a customer data set that predicts buying power of customers based on their information. This study tests the performance of the suggested method with the data set alone with general prediction methods and compares performances of them.

추론적 기법을 사용한 객체지향 데이터베이스의 지능적인 질의 처리 (Intelligent Query Processing in Deductive and Object-Oriented Databases)

  • Kim, Yang-Hee
    • 지능정보연구
    • /
    • 제9권1호
    • /
    • pp.251-267
    • /
    • 2003
  • 객체지향 데이터 베이스에서는 지능 정보시스템에서 요구하는 것을 만족하기 위하여 보다 지능적인 질의 처리 기법이 필요하다. 본 논문에서는 추론적 기법을 사용하여, 객체지향 데이터베이스에서의 지능적인 질의 처리하는 방법에 대하여 논의한다. 논문에서 제시하는 방법을 사용하여, 객체지향 데이터베이스에서 주어진 질의에 대한 답을 추상적으로 표현하는 지능적인 답을 얻을 수 있다. 본 논문에서 제안하는 지능적인 질의 처리 방법은 규칙 표현, 규칙 재편성, 전 분석, 분석의 네 단계로 구성된다. 규칙 표현 단계에서는 객체지향 데이터베이스 스키마를 사용하여 추론 규칙을 생성한다. 규칙 재편성 단계에서는 규칙에서 순환을 제거한다. 전 분석 단계에서는 유일한 내포적 문자를 얻기 위하여 규칙변환이 이루어진다. 분석 단계에서는 SLD-분석을 사용하여 내포적 답을 구한다.

  • PDF

진화론적 최적 규칙베이스 퍼지다항식 뉴럴네트워크 (Genetically Optimized Rule-based Fuzzy Polynomial Neural Networks)

  • 박병준;김현기;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.127-136
    • /
    • 2005
  • In this paper, a new architecture and comprehensive design methodology of genetically optimized Rule-based Fuzzy Polynomial Neural Networks(gRFPNN) are introduced and a series of numeric experiments are carried out. The architecture of the resulting gRFPNN results from asynergistic usage of the hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks (PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the gRFPNN. The consequence part of the gRFPNN is designed using PNNs. At the premise part of the gRFPNN, FNN exploits fuzzy set based approach designed by using space partitioning in terms of individual variables and comes in two fuzzy inference forms: simplified and linear. As the consequence part of the gRFPNN, the development of the genetically optimized PNN dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gRFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed gRFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Temperature Inference System by Rough-Neuro-Fuzzy Network

  • Il Hun jung;Park, Hae jin;Kang, Yun-Seok;Kim, Jae-In;Lee, Hong-Won;Jeon, Hong-Tae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.296-301
    • /
    • 1998
  • The Rough Set theory suggested by Pawlak in 1982 has been useful in AI, machine learning, knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning. etc. The main advantages of rough set are that it does not need any preliminary or additional information about data and reduce the superfluous informations. but it is a significant disadvantage in the real application that the inference result form is not the real control value but the divided disjoint interval attribute. In order to overcome this difficulty, we will propose approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal rule base from lots of input/output datum. These results are applied to the rule construction for infering the temperatures of refrigerator's specified points.

  • PDF

Rough Set을 이용한 퍼지 규칙의 생성 (Extraction of Fuzzy Rules from Data using Rough Set)

  • 조영완;노흥식;위성윤;이희진;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.327-332
    • /
    • 1996
  • Rough Set theory suggested by Pawlak has a property that it can describe the degree of relation between condition and decision attributes of data which don't have linguistic information. In this paper, by using this ability of rough set theory, we define a occupancy degree which is a measure can represent a degree of relational quantity between condition and decision attributes of data table. We also propose a method that can find an optimal fuzzy rule table and membership functions of input and output variables from data without linguistic information and examine the validity of the method by modeling data generated by fuzzy rule.

  • PDF

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

양면 조립라인 밸런싱을 위한 할당규칙 (An Assignment Rule for Balancing Two-sided Assembly Lines)

  • 이태옥;김여근
    • 산업공학
    • /
    • 제10권2호
    • /
    • pp.29-40
    • /
    • 1997
  • This paper considers two-sided (left and right side) assembly lines which are often used, especially in assembling large-sized products such as trucks and buses. A large number of exact algorithms and heuristics have been proposed to balance one-sided lines. However, little attention has been paid to balancing two-sided assembly lines. This paper presents an efficient assignment rule for balancing two-sided assembly lines. The rule involves maximizing relatedness and slackness between works. We first investigate the characteristics of two-sided line balancing and devise new measures for the balancing. We in this rule assign workstations a set of tasks rather than an unit task at a time. a priority rule of assigning the sets is proposed. Extensive computational experiments are carried out to make the performance comparison between the proposed rule and existing ones. The computational results show that our rule is promising in solution quality.

  • PDF

Association Rule of Gyeongnam Social Indicator Survey Data for Environmental Information

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권1호
    • /
    • pp.59-69
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze Gyeongnam social indicator survey data by 2001 using association rule technique for environment information. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We can use to environmental preservation and environmental improvement by association rule outputs

  • PDF