SHEX| SHREA|AH S =2X] oM W15 20034 62 (pp.251~267)

Intelligent Query Processing in Deductive and
Object-Oriented Databases

Yang Hee Kim

Division of Liberal Art, Korea National Sport University

(vangh-kim@knupe.ac.kn

In order to satisfy the needs of an intelligent information system, it is necessary to have more intelligent
query processing in an object-oriented database. In this paper, we present a method to apply intelligent query
processing in object-oriented databases using deductive approach. Using this method, we generate intelligent
answers to represent the answer-set abstractly for a given query in object-oriented databases. Our approach
consists of four stages: rule representation, rule reformation, pre-resolution, and resolution. In rule
representation, a set of deductive rules is generated based on an object-oriented database schema. In rule
reformation, we eliminate the recursion in rules. In pre-resolution, rule transformation is done to get unique
intensional literals. In resolution, we use SLD-resolution to generate intensional answers.
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1. Introduction

When querying an object-oriented database,
a set of objects (extensional answers) is usually
returned to users as an answer set (Bancilhon,
1988). But these objects may belong to different
classes within a class hierarchy or they may be
different complex objects somehow related to each
other. In a certain query, it is necessary to find the
set of rules which characterizes the conditions for
an object to satisfy in order to belong to an answer

to the query. Object-oriented databases do not
support such capability. However, in a deductive
database, users can get the answer of a query as
not only a set of facts but also a set of formulas
(intensional answers). Deductive databases can
generate a set of first order logic formulas as an
answer set for a given query.

Intensional query processing has many
advantages. Intensional answers are given as a set
of formulas which are independent of particular
circumstances in the database. Not only does an
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intensional answer represent the answer to the
given query in a more compact way, but it can be
computed much faster than extensional answers.
Most of the time intensional answers can be
computed only using the rules without accessing
the database. For a detailed description of the
intensional query processing, we refer to (Yoon et
al., 1994).

In this paper, we introduce a method to
apply the intensional query processing techniques
of deductive databases to object-oriented databases.
By introducing rules into object-oriented database
systems and apply the iﬁtensiona] query processing
techniques to object-oriented database systems. All
the query languages in object-oriented database
systems known to us are not able to handle
incomplete queries. An incomplete query is a query
on the attribute which belongs to a subclass but not
to the base class. In this paper, we make it possible
to answer incomplete queries by representing
systems schema in terms of rules. Conventionally,
the answer-set of a query in systems is represented
as a set of objects. But, the presence of semantics
in  systems 'schema and intensional query
processing methodologies enable us to express the
answer-set abstractly as names of classes. In this
paper, we present an algorithm to obtain abstract
representation of a given answer-set. It provides us
better understanding of the answer.

Rules which represent object-oriented
database schema consist of structural rules and
subclassing rules. The structural rules in turn
consist of "IS_A"-relationships representing the

class hierarchy. The subclassing rules represent
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characteristic properties of subclasses. We then
transform all the rules to non-recursive Horn
clauses and get an intensional answer by using
SLD-resolution.

We provide some sample queries to show
the advantages of an intensional answer to give
query in an object-oriented database system over
conventional answers.

This paper is organized as follows. In
section 2, we discuss several previous works for
intensional query processing. In section 3, we
review the definition of intensional answers and
methods for deriving intensional answers. In
section 4, we look at the "IS_A"-relationship in
object-oriented database systems. In section 5, we
present an approach to convert an object-oriented
schema based on class hierarchy into non-recursive
Horn clauses and generate intensional answers
from logical consequences of non-recursive Horn
clauses and a given query. In section 6, we give
a detailed example. In section 7, we give
conclusions and some remarks for possible

extensions of the method in this paper.

2. Related Works

A deductive database is a database in which
new facts may be derived from the facts that were
explicitly stored by using an inference system. A
deductive databases composed of extensional
database (EDB) and intensional database (IDB).
Cholvy and Demolombe (1986) studied the idea of

having a set of formulas as an answer set. Their
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answers were a set of formulas defining the
conditions that are independent of a particular set
of facts. They also developed a method for
generating answers using resolution.

Pascual and Cholvy (1988) improved an
algorithm based on the research by Cholvy and
Demolombe. They dealt with only Horn clauses to
avoid many steps for generating the answers. But
they did not discussed the detailed steps to remove
meaningless answers. Song and Kim (1991) solved
this problems. They discussed intensional query
processing scheme based on SLD-resolution and
discussed an implementation fo an intensional
query processing in Prolog.

Pirotte et al. (1991) used integrity constraints
to filter out improper answers. Yoon et al. (1995)
used only Horn-clauses for intensional databases
and use a SLD-resolution which takes advantages
of Hom-clauses. They introduced the notions of
extended term-restricted rules, relevant literals and
relevant clauses to avoid generating certain
meaningless intensional answers.

Also, Yoon and Park (1999) introduced a
partially automated method for generating
intensional answers at multiple abstraction levels
for a query. Pontieri et al. (2002) propose a data
source integration approach. The proposed
approach consists of two components, performing
intensional and  extensional integration,
respectively; these are strictly coupled, since they
use related models for representing intensional
and extensional information and are synergic in

their behaviour.

3. Definition of Intensional Answers

In this section, we give a formal definition
of intensional answers. A formal definition of
intensional answers is given by Cholvy and
Demolombe (1986). We define T as the database
theory consisting of a set of facts and rules. Let
& X) be a query where X is a tuple of free
variables. Then, the intensional answer ANS(Q)

to a certain query Q(X) is defined as follows:

ANS(Q) = {ans(X)~: ~ T~ + ~ YV X~ (ans(X) — X X)))

where agns(X) is a literal.

However, we want to restrict the answers
within a defined domain of interest. Here are some
restriction on the intensional answer set.

So, let DP= {P,,---, P,} be set of predicate
symbols either of the IDB or EDB. And let L(DP)
be the first order language whose predicate

symbols are P, -, P,. Then define an intensional

answer ANS(Q,DP) to the query @Q(X) by :

ANS(Q,DP)= {ans(X)~:asn(X)e L(DP)~ and
~T~+~ VX~ (ans(X) ~ &X X))~ and
(ans(X)~ is~\not~ the~ negation~ of~ a~ tautology) ~ and
(each~ ans( X)~ is~\not~ redundant)}

We note that :

=T~V X~ (ans(X) > X))~
@ T~ U~ {not(V X~ (ans(X) — Q(X))) } ~is~ inconsistent
e T~ U~{3X(ans(X) /\ not ((X))) }~ is~ inconsistent

Let S be a set of clauses that represent the
standard clausal form of 7 axioms (Chang and
Lee, 1973). Then
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3 X~ (ans(X) /\ not(X X))) S~U~{"Q(X,)} will result in a resolvent

R(X,) and then resolving R(X,) together with
leads the standard form ans(X;) /\ not(Q( X))

where X, is a tuple of Skolem constants. So, the

ans(X,) will result in the empty clause. That

means that ans(X,) must equal to ~R(X,).
above formula is equivalent to

S~ U~ {ans(Xy), 7(( X))}~ s~ inconsistent.
e T RTINS 4. Class Hierarchy

Therefore, answer formulas ¢ are . . .
ns(X) In this section, we look at a class hierarchy,

h luti ~ U~ - . .
such that resolution on $~{J~(ans(Xp), ~(@(Xe))} representing "IS_A"-relationships between the

leads to the empty clause. different classes. The class hierarchy represented in

However, initially we do not know what the <Figure 1> will be our object-oriented example

ans(X,) are. So, for the resolution processing, we database.

will start with S~ (J~ {7 Q(X;)}. After resolving

Air_Vehicle

Aircraft coe
\ id : Integer
@— color : String

( flying_method: string
< H_A_Aircraft L_A_Aircraft >

flying_method : string = “lifting_power” fiying_method : string = “gas”

wing_state : string air_speed : integer
e - =, @

Airplane Helicopter Ballon Air_Ship

air_speed ' integer weight : integer
wing_state : string = “fixed”|| wing_state : string = “rotating”}

\L\)

Normal_Speed_Airplane Low_Speed_Airplane High_Speed_Air_Ship Normal_Speed_Air_Ship
(air_speed >= 1000} (400 < air_speed < 1000) (air_speed > 150) (air_speed <= 150)

\ ¢ M ¢ ™\ ¢ ™\

Legend : ™ IS_A

type_of_bag : string]|power_gear : string

L_A_Aircraft = Lighter—than-Air Aircraft H_A_Aircraft = Heavier—than-Air Aircraft

<Figure 1> Class Hierarchy
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A typical incomplete query for the class
hierarchy in <Figure 1> is the following:

SELECT Aircraft.id
WHERE air_speed > 150

4.1 Conventional Query Processing

In a conventional object-oriented database
we would get back a set of aircraft ids where the
air speed of the aircraft is greater than 150
kilometers per hour. According to our particular
database in <Figure 1>, we get back the following

set:

{NSAI, NSA2, -, LSAl, LSA2, ---, HSASI, HSAS2, - }.

All these objects belong to different
subclasses of the base class object. In order to find
all the applying objects, the database must provide
a technique to search through all the subclasses of
aircraft. But there do not exist good query
languages for OODB systems which are simple to
use the advantages of an object-oriented system.

4.2 Intensional Query Processing

Using intensional query  processing
methodologies, the answer-set of the same query
will be different. The intensional answer will
consist of several formulas characterizing the
different classes the answer objects come from.
In our example there would be the following

intensional answers:

- intensional-answer] = all normal _speed_airplane
- intensional-answer2 = all low_speed_airplane

- intensional-answer3 = all high_speed_air_ship

In the next section of this paper, we will
look at a way to automatically access the desired
subclasses without being aware of the exact
structure of the class hierarchy.

5. Formalization of Intelligent
Query Processing

In this section, we present the intelligent
query processing. We divide our approach into four
stages : rule representation, rule reformation,
pre-resolution, and resolution. The four phases are
partitioned into two categories : processing that can
be done statically once and processing that has to
be performed at run time. Rule representation, rule
reformation and pre-resolution belong to the first
category and the last phases belong to the second
category.

5.1 Rule Representation

In the first phase, we execute two steps. In
the first step, we generate a set of deductive rules
based on the hierarchy in an object-oriented
database. We can classify rules into two different
categories : structural rules and subclassing rules.
The rules in the first category come out of the class
hierarchy of the objects. For example, there is a
class Aircrat having a aircraft type, say
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H A Aircraft as subclass. Then we have the rule:
IS A(H_A_Aircraft, Aircraft). And the rules in the
second category represent the semantic knowledge
between classes. For example, there are two
classes, Airplane and Normal Speed_Airplane. If
the air speed is greater than or equal to 1000, the
that airplane belongs to subclass Normal _Speed
Airplane. This semantic knowledge involves two
classes of Airplane and Normal_Speed Airplane.

The structural rules and subclassing rules of
our given example database would be the

followings :

- structural rules
- IS A(H_A_Aircraft, Aircraft)
IS A(L_A Aircraft, Aircraft)
IS _A(Airplane, H A_Aircraft)
IS_A(Helicopter, H_A_Aircraft)
IS A(Ballon, L_A_Aircraft)
- IS_A(Air_Ship, L. A_Aircraft)
- IS_A(Normal_Speed_Airplane, Airplane)

- IS A(Low_Speed Airplane, Airplane)
- IS_A(High_Speed_Air_Ship, Air_Ship)
- IS A(Normal_Speed_Air_Ship, Air_Ship)

- subclassing rules

- Normal_Speed Airplane(X) < Airplane(X)
A air_speed(X, Y)Agreatereq(Y, 1000)

- Low_Speed_Airplane(X) < Airplane(X) A
air_speed(X, Y)Agreater(Y, 400) A less(Y,
1000)

- Airplane(X) < H_A_Aircraft(X) N

wing_state(X, Y) A equal(Y, "fixed")
Helicopter(X) < H_A_Aircrafi(X) A
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wing_state(X, Y) A equal(Y, "rotating")

- High_Speed_Air_Ship(X) < Air_Ship(X) A
air_speed(X, Y) A greater(Y, 150)

- Normal Speed Air_Ship(X) <« Air-Ship(X)
A air_speed(X, Y) A lesseq(Y, 150)

- H A Aircraft(X) <« Aircrafi(X) N
flying_method(X, Y) A
equal(Y, "lifting_power")

- L_A_Aircraft(X) < Aircrafi(X) A
flying_method(X, Y) A equal(Y, "gas")

And in the second step, we introduce EDB
literals to represent the objects that belong to each
class. The EDB literals to represent objects that
belongs to our example database would be the
followings :

EDB

Aircraft(id, color, flying_method)

H_ A Aircrafi(id, color, flying method,
wing_state)

Airplane(id, color, flying method, wing_state,
air_speed)

Normal Speed Airplane(id, color,
flying_method, wing_state, air_speed)

Low_Speed_Airplane(id, color, flying methed,
wing_state, air_speed)

Helicopter(id, color, flying method,
wing_state, weight)

L A Aircraft(id, color, flying method,
air_speed)

Ballon(id, color, flying method, air_speed,
type_of bag)

Air Ship(id, color, flying_method, air_speed,

power_gear)
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High_Speed Air_Ship(id, color,
flying method, air_speed, power_gear)
Normal_Speed_Air_Ship(id, color,
flying_method, air_speed, power gear)

5.2 Rule Reformation

In the rule reformation steps, we remove
literals that will cause recursion in rules. By
limiting non-recursive clauses the algorithm can be
terminated, and by Horn clauses efficient algorithm
can be used. To compute intensional answers
efficiently, subclassing rules should be represented
in a proper form. Since testing satisfiability in
first-order logic formula is undecidable, adopting
first-order logic formula for managing subclassing
rules is not desirable. Therefore, we need a subset
of first order logic expressions which is powerful
enough for expressing subclassing rules and in
which the satisfiability problem can be processed
efficiently.

Subclassing rules can be represented with
the "simple predicates”. The BNF of simple
predicate abbreviated by SP is as follows:

<{SP>:: =<{SP> /\(SP> | (SP>\/{SP> | ™ (SP) | < predicates>

< predicates> :: =< comparison operator>({ variable name) < constant)}
| < comparison operator> (< variable name),  variable namey)
| <comparison operator>({ variuble name),
{ variable name) + < constant))

{ comparison operatory:: =equal | not _equal | greater
| greater _eq | less | less_eq

Rosencrantz and Hunt showed that the
satisfiability problem of the set of simple predicate
is NP-hard (Rosencrantz and Hunt, 1980). But they
showed that conjunctive not_equal free predicates

(simple predicates that do not contain not_equal
and \/) can be solved in polynomial time. We can
represent a large class of subclassing rules with
conjunctive not equal free predicates. The
following algorithm changes a conjunctive
not_equal free predicate to a weighted directed
graph (Motro and Yoon, 1990).

Algorithm 1

Input : A conjunctive not equal free predicate P.
Output : A weighted directed graph.

(v, and o, stand for variables and ¢

stands for a constant)

1. Convert P into an equivalent predicate P'
containing only less_eq comparison literal  as
follows :

1.1 Replace v, = v, with

(v + A (<0, +0).

1.2 Replace v,<v, with v,<v,+(—1).

1.3 Replace »;<», with »,<v,+0.
1.4 Replace v,> v, with v,<p;+(—1).

1.5 Replace v,=vp, with v,<y;+0.

1.6 Replace v, = ¢ with

(0, <0+INO0<0,+(—0)).

1.7 Replace v, (¢ with v, <0+ (c—1).

1.8 Replace v <c with v, <0+ c.

1.9 Replace o> c with 0<v;+(—c—1).
1.10 Replace v,>c¢ with 0<v,+(—¢).
1.11 Replace v, = v,+ ¢ with

(1 <o+ IN (v <0+ (= 0).
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1.12 Replace v;<v,+ ¢ With v, <v,+(c—1).
1.13 Replace v,<vy+c with v, <vy+c.
1.14 Replace v;> v+ ¢ Wwith w,<p;+(—c—1).

1.15 Replace v, 2v,+ ¢ with v,<v,+(— o).

2. Convert P' into a weighted directed graph. The
graph has a node for each variable and a node
for a constant zero. Conversion is as follows:

2.1 v,<v,+ ¢ corresponds to an edge from
node u, to node v, with edge weight c.

2.2 v,<0+ ¢ corresponds to an edge from node
v, to zero node with edge weight c.

2.3 0<uwv,+ ¢ corresponds to an edge from zero

node to node »; with edge weight - c.

There are two restrictions in the above
algorithm. The one is that each variable should be
integer valued. The other is that predicates can not
have not equal operators. Fortunately, many of
subclassing rules involve integer valued domains
such as engine size, price, number of doors, etc.
And in this paper, we will deal with not_equal free
predicates.

The next algorithm will change a weighted
directed graph G with no multiple edges to a
conjunctive less_eq predicate(not_equal free

predicate that contains only less eq).

Algorithm 2

Input : A weighted directed graph G with no
multiple edges.
Output : A conjunctive less_eq predicate.
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(v, and v, stand for variables and ¢

stands for a constant)

1. An edge from node v, to node v, with edge
weight ¢ corresponds to v;<vy+c.

2. An edge from node », to zero node with edge
weight ¢ corresponds to ;<0 +c.

3. An edge from zero node to node »; with edge

weight — ¢ corresponds to 0<v,+c.

The next algorithm will test comparison
literals using a weighted directed graph and return
a truth constant or a simplified predicate.

Algorithm 3

Input : A predicate consisting of the conjunction
of an old comparison predicate (predicate
in resolvent before resolution) and a new

(predicate  in

comparison  predicate

resolvent after resolution).

Truth constant(TRUE of FALSE) or
simplified predicate.

Output .

1. Apply algorithm 1 to the conjunction of old and
new comparison predicate. And then we get a
weighted directed graph G.

2. If G has a negative cycle then

return FALSE.
else
If there is more than one edge from node

v, to node v, then
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begin
retain the minimum weight edge
and discard the others
apply algorithm 2 to G and we get
a conjunctive less eq predicate
using
step 1 of algorithm 1
if P is the same as new comparison
predicate then
return TRUE
else
return P
end
else
return old comparison predicate A

new comparison predicate

We can use Floyd's all shortest path
algorithm to see if the graph has a negative weight
cycles. In algorithm 3, the step 1 can be processed
in a linear time, if-part of the step 2(Floyd's all
shortest path algorithm) takes O(%*) and else-part
of the step 3 can be processed in a linear time

where £ is a number of node in G.

In the rule reformation step, we need to
eliminate literals that will occur recursion. After
that elimination, we will get the following

reformed rules in our example database.

- reformed subclassing rules
- Nommal Speed Airplane(X) <« air_speed(X,
Y) A greatereq(Y, 1000)
- Low_Speed_Airplane(X) < air_speed(X, Y)

A greater(Y, 400) A less(Y, 1000)

- Airplane(X) < wing _state(X, Y) A equal(Y,
"fixed")

- Helicopter(X) < wing_state(X, Y) A
equal(Y, "rotating")

- High_Speed_Air_Ship(X) < air_speed(X, Y)
A greater(Y, 150)

- Normal Speed_Air Ship(X) < air_speed(X,
Y) A lesseq(Y, 150)

- H A _Aircrafi(X) < flying method(X, Y) A
equal(Y, "lifting_power™)

- L_A Aircraft((X) < flying method(X, Y) A
equal(Y, "gas")

5.3 Pre-Resolution

In the first and second step some rule
reformations should be done in order to get unique
intensional literals.

Unique intensional literals means that a
literal should either be extensionally or
intensionally defined but not both. We can always
get rid of this equality of names by renaming the
extensional literal to »* and introduce a new rule
p < p°. For example, we have the following new
rules : Aircraft(X) < Aircraft (X), Airplane(X) <
Airplane’(X) and Helicopter(X) < Helicopter (X).
In doing so, we can handle complete queries as
well as incomplete queries for the intensional query
processing.

Next we can change "IS_A"-rules to the
first-order logic since the semantic of "IS_A" is
implication. For example, IS_A(X,Y) can be
changed Y « X. Now, IDB corresponds to a set
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of non-recursive Horn clauses.

5.4 Resolution

In this step, we use SLD resolution to
compute intensional answers. The following
algorithm will find intensional answers from a set
of non-recursive Hormn clauses consisting of
EDB U IDB and a query @Q(X).

Algorithm 4

Input : A set of non-recursive Homn clauses
consisting of EDB |J IDB and a query
(X) where X is a tuple of free

variables.

Output : A set of ANSKX) of intensional

answers.

1. Negate the query and convert it into the clause
form
2. Repeat for all branches of a resolution tree
2.1 Perform resolution using subclassing rules,
structural rules or new rules
2.2 If resolvent contains extensional literal p*
then
If base literal is not in the attributes of
p" then
current branch is fail branch and
return
current branch is fail branch
and return
else if result is FALSE then
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current branch is success
branch and return
ANS(( X) = selected predicate
else
current branch is success
branch and return

ANS(X)= selected predicate /\
simplifid predicate

Until it cannot be further resolved
3. If all success branches contain extensional

answers then
begin
choose the highest success branch
generate the intensional answers by
negating resolvent
end

else
begin
ignore success branch containing
extensional answers

return intensional answers ANS/{X)

end

6. Example

In this section, we introduce an example to
show the application of our approach and
algorithm introduced in the section above. To show
the application of the algorithm introduced in the
previous section, we will use our example database
given in <Figure 1>.

EDB and IDB schema looks as follows :
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EDB

as in section 5.1

1IDB
structural rules

subclassing rules

Frist we rename the extensional literal, add
new rules in the IDB, remove recursion, and

change structural rules to the first order logic:

EDB

Aircraﬁ‘(id, color, flying method)

H_A_Aircraft’(id, color, flying_method,
wing_state)

Airplane’(id, color, flying_method, wing_state,
air_speed)

Norma]_Speed_Ailplane'(id, color,
flying_method, wing _state, air_speed)

Low_Speed_Airplane‘(id, color,
flying_method, wing_state, air _speed)

Helicopter (id, color, flying_method,
wing_state, weight)

L_A_Aircraﬁ'(id, color, flying method,
air_speed)

Ballon (id, color, flying_method, air_speed,
type_of bag)

Air_Ship'(id, color, flying method, air_speed,
power_gear)

High Speed Air Ship'(id, color,
flying method, air_speed, power gear)

Normal_Speed_Air_Ship'(id, color,
flying_method, air speed, power gear)

IDB

- structural rules

Aircraft(X) «— H A_Aircraft(X)

Aircraft(X) < L _A_Aircrafi(X)

H_A Aircraft(X) < Airplane(X)

H A _Aircraft(X) < Helicopter(X)
L_A_Aircraft(X) « Ballon(X)
L_A_Aircraft(X) <« Air_Ship(X)
Airplane(X) « Normal Speed_Airplane(X)
Airplane(X) < Low_Speed Airplane(X)
Air_Ship(X) < High_Speed_Air_Ship(X)
Air_Ship(X) < Normal Speed_Air_Ship(X)

- subclassing rules

Normal _Speed_Airplane(X) < air_speed(X,
Y) A greatereq(Y, 1000)

Low Speed Airplane(X) <« air speed(X, Y)
A greater(Y, 400) A less(Y, 1000)

Airplane(X) < wing_state(X, Y) A equal(Y,
"fixed")

Helicopter(X) < wing_state(X, Y) A equal(Y,
"rotating")

High_Speed Air Ship(X) < air_speed(X, Y)
A greater(Y, 150)

Normal_Speed_Air_Ship(X) < air_speed(X,
Y) A lesseq(Y, 150)

H A Aircraft(X) « flying method(X, Y) A
equal(Y, "lifting power")

L_A Aircraft(X) < flying method(X, Y) A
equal(Y, "gas")

- new rules

Aircraft(X) < Aircraft’ (X)
H A Aircraft(X) < H_A_Aircraft (X)
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Airplane(X) < Airplane (X)
Helicopter(X) « Helicoptert(X)
Normal_Speed Airplane(X) «—
Nonnal_Speed__Airplane'(X)
Low_Speed_Airplane(X) <
Low_Speed_Airplane (X)
L _A_Aircraft(X) < L_A_Aircraft (X)
Ballon(X) < Ballon'(X)
Air_Ship(X) < Air_Ship'(X)
High Speed Air Ship(X) <
High_Speed_Air_Ship'(X)
Normal_Speed Air_Ship(X) «
Normal_Speed Air_Ship'(X)

Now let us consider the query "Find a set
of aircraft ids where the air speed of the aircraft
is greater than 150 kilometers per hour”. The query

can be written us

X X) = Aircraft(X) A air_speed(X, Y)
A greater(Y, 150).

Thus the goal clause is

(G) « Aircraft(X), air speed(X, Y),
greater(Y, 150).

After four phases, we get the following

resolvents:

(R1) < Aircraft (X), air_speed(X, Y),
greater(Y, 150)

(R2) <« H_A_Aircraft(X), air_speed(X, Y),
greater(Y, 150)

262 E=RX|SHEAARSE=RA| Mo H1E 2003 68

(R3) <« L _A_Aircraft(X), air_speed(X, Y),
greater(Y, 150)

(RI-1) « fail

(R2-1) « H_A_Aircraft’(X), air_speed(X, Y),
greater(Y, 150)

(R2-2) <« Airplane(X), air_speed(X, Y),
greater(Y, 150)

(R2-3) <« Helicopter(X), air_speed(X, Y),
greater(Y, 150)

(R2-4) < fail

(R2-5) « Airplane’(X), air_speed(X, Y),
greater(Y, 150)

(R2-6) <« wing state(X, Y), equal(Y, "fixed™),
air_speed(X, Y), greater(Y, 150)

(R2-7) <« Normal_Speed_Airplane(X),
air_speed(X, Y), greater(Y, 150)

(R2-8) <« Low_Speed Airplane(X),
air_speed(X, Y), greater(Y, 150)

(R2-9) <« success

(R2-10) < wing_state(X, Y), equal(y,
"rotating™), air_speed(X, Y),
greater(Y, 150)

(R2-11) « success

(R2-12) « fail

(R2-13) «— Normal_Speed_Airplane’(X),
air_speed(X, Y), greater(Y, 150)

(R2-14) « air_speed(X, Y), greater_eq(Y,
1000), air_speed(X, Y), greater(Y,
150)

(R2-15) — Low_Speed Airplane’(X),
air_speed(X, Y), greater(Y, 150)

(R2-16) « air_speed(X, Y), greater(Y,400),
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less(Y,1000), air_speed(X, Y),
greater(Y,150)

(R2-17) « success

(R2-18) « ANS'(X) = Normal_Speed
Airplane(X)

(R2-19) « success

(R2-20) <~ ANSH(X) = Low_Speed Airplane(X)

(R3-1) «— L_A_Aircraft'(X), air_speed(X, Y),
greater(Y, 150)

(R3-2) <« Bailon(X), air_speed(X, Y),
greater(Y, 150)

{(R3-3) < Air_Ship(X), air_speed(X, Y),
greater(’Y, 150)

(R3-4) «- syccess

(R3-5) <« success

(R3-6) «— Air_Ship'(X), air_speed(X, Y),

greater(Y, 130)

(R3-7) <« High Speed Air Ship(X),
air_speed(X, Y), greater(Y, 150)

(R3-8) <« Low_Speed Airplane(X),
air_speed(X, Y), greater(Y, 150)

(R3-9) <« success

(R3-10} « success

(R3-11) « air_speed(X, Y), greater(Y, 150),
air_speed(X, Y), greater(Y, 150}

{R3-12) <« success

(R3-13) <« air_speed(X, Y), less_eq(Y, 150),
air_speed(X, Y), greater(Y, 150)

(R3-14) « ANS’(X) = High Speed
Air_Ship(X)

(R3-15} « fail

So, the resolution tree is as follows.

//7\
///\ /\\

R2-1 R2-3 R3-2

TN L
=

R2-13 RZ 14 R2-15 R2- 16 R3-12 R3-13

|

R2-17 R2- 18 R2~-18 R2 20 R3-14 R3-15

R2-11 R2-12

<Figure 2> Resolution Tree
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Since there are three branches that have
intensional answers, we have following intensional

answers

- ANSYX) = Normal_Speed_Airplane(X)
- ANSY X) = Low_Speed_Airplane(X)
- ANS%X) = High Speed Air Ship(X)

7. Conclusion

In this paper, we have presented a method
to obtain more 'meaningful answers (intensional
answers) to queries in object-oriented databases
using deductive approach. By introducing rules
into object-oriented databases and applying the
intensional query processing techniques of
deductive database to the object-oriented databases
systems, we are able to use the advantages of the
semantics of object-oriented databases schema.

Our approach consists of four stages: rule
representation, rule reformation, pre-resolution, and
resolution. In rule representation, a set of deductive
rules is generated based on an object-oriented
database schema. In rule reformation, we eliminate
the recursion in rules. In pre-resolution, rule
transformation is done to get unique intensional
literals. In resolution, we use SLD-resolution to
generate intensional answers. Since our method
discovers all of the intensional answers, it is
complete.

In this paper, we only obtain intensional

answers for a class hierarchy model but not for a
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class-composition hierarchy. Our approach does
not seem to be powerful enough to represent a
complex object hierarchy. It is probable that we
need more powerful logic for reasoning intensional

answers on complex objects.
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