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Abstract

The Rough Set theory suggested by Pawlak in 1982 has been useful in Al machine learning,
knowledge acquisition, knowledge discovery from databases, expert system, inductive reasoning,
etc. The main advantages of rough set are that it does not need any preliminary or additional
information about But 1t is a significant
disadvantage in the real application that the inference result form is not the real control value
but the divided disjoint interval attribute. In order to overcom this difficulty, we will propose
approach in which Rough set theory and Neuro-fuzzy fusion are combined to obtain the optimal
rule base from lots of input/output datum. These results are applied to the rule construction for
infering the temperatures of refrigerator’s specified points.

data and reduce the superfluous informations.
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1. Introduction obtaining the optimal fuzzy rule base. Rough

In the past few years, the fuzzy set theory
has been making a progress in the practical
fields.
focused on Increasing efficiency of the fuzzy
(11[6].

network which possess the learning

Recently, a strong attention has

logic in the industrial application

Neural

capability and 1s based on the parallel

distributed processing can be considered as a
promising technique in the area of the
information processing[2][5].

the fusion

Meanwhile, techniques of the

above two theorys have concentrated on

applying neural network to obtain the optimal
rule base of fuzzy logic system [3][10]. But,
unfortunately it is very hard to obtain the
optimal rule base because of the limited
learning capabilities of neural network.

To overcome such a difficulty, we employ
some concepts of

rough set theory in

set theory which is proposed by Pawlak in
1982 is able to
informations

obtain the profitable
uncertain  and
incomplete informations [9][10]. This theory

does not need any preliminary and additional

from the

informations about given data. In this paper,
we propose an effective Rough Fuzzy-Neural
The
construct an

network. proposed  algorithm  can

optimal rule base of
FNN(fuzzy-neural network) system by fusing
with rough set theory.
Compared with conventional FNN, the
proposed approach may be considerably more
realistic because it reduces the overlapping
In this
paper, the results are applied for constructing

the  temperature

datum for constructing the rule base.
inference system of
refrigerator

The organization of this paper is as follows.
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In section 2, a rule base for inferencing the

inside temperature of a refrigerator is
constructed by the rough set theory. And
The temperature inference system by the

Rough Fuzzy-Neural network is explained in

Section 3.  Finally, computer simulation

results are shown n Section 4.

2. Construction of rule base from
rough set theory

2-1. Problem statement
The

system needs a lot of sensors in order to

conventional

refrigerator  control

keep the wuniform distribution of the
temperature. But it is not proper way to
install such a lot of sensors inside the
refrigerator because of the high cost and

many difficulties in handling the information.
One
obtain the effective result is to construct an
for the
temperatures at some specified locations.

This paper
inference system for

way to overcome the difficulties and

efficient inference system interior

will develope an intelligent
estimating the
temperatures at some specified locations of
The

scheme consists of the rule generation from

the refrigerator(cf Fig. 1) proposed

rough set theory and the construction of the
inference system by neural-fuzzy fusion.

T —
—Sensort— ntelligent ——> p
~ Inference : :
—Sensor2—p System K > Ti
Fig. i, Temperature inference system

2-2. Data clustering by Rough Set
In Rough Set Theory. the universal data

set U is represented by the partial attribute

set B in the universal attribute set A.

Attribute set B induces equivalence classes

which have indiscernibility relation IND(B)

in the elements. We define Reds™ (U, B) as a
set which has the reducts of discernible
attributes between the subset X in the U and

the other subset(U-X) in U, and also define

Ruls*(U,B) as a set which has only the
minimum reducts of the subset X about an
element in the subset X.

And then the
constructing  the

whole  procedure of

proper rule base for
inferring the temperatures at several locations
of the refrigerator from rough set theory can
be summarized as follows. At this time, it
must be realized that there
and c2) at

locations of the

are only two
sensors  (cl some designated
and the

must be

refrigerator
temperatures of 12 another points
estimated from the measuring values of two
SEnsors.

[step 1] Rearrange the temperature values
of two sensors{ Cl, C2), the change ratios
of the (dCl, dC2) and the
temperature that are experimentally measured

Sensors

at each specified point (MBL), as shown in
Table 1.

[step 2]
Table 1 into the symbolic ones as shown in
Table 5 by using Table 2 ~ Table 4. (Table
5 is also called as an observation table.)

Convert the numeric values of

Table 1, Values of measurement

Sensor|Sensor | the change | the change
data MBL

1 2 of Sensor 1 | of Sensor 2
pl |2.459 | 2,553 -0.017 0.04 1.1
p2 12.551 | 2.645 -0. 009 0.05 2.5
p3 [2.448 | 2.789 -0. 005 0.017 1.3
pd |2.521 | 2.562 -0, 020 0.009 4.1
pd | 2.539| 2.534 -0.021 -0, 040 0.2
pb6 |2.545| 2.668 0.005 0.07 2.9
p7 12.501 | 2.601 -0, 024 -0.008 3.9
p8 |2.489 | 2.650 0.019 -0. 041 0.1
p9 [2.471| 2.512 -0. 029 0.09 0.2
pl0 |2.551 | 2.699 0.001 -0.039 5.7
pll [2.480| 2.779 0.020 -0.044 0.5
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Table 2, Attribute symbol

| attribute symbol attribute symbol
f sensor | C1 MFL d4
the change of dC1 MEC dH
sensor] MFR d6
sensor 2 dcz LBL d7
the change of LBC d8
sensor? dc2 LBR d9
MBL dl LEFL d1o
MBC d2 LFC dil
MBR d3 LFR di2

Table 3, Output interval value

. d0~dl12 attribute
interval
value

0 d(x)<0.6

1 0.6=<d(x)<2.2

2 2.2<d(x)<3.8

3 3.8=<d(x)<6.4

4 54<d(x)

Table 4. Sensor input interval value

Interval
_ Cl attribute C2 attribute
Value
0 C1({x)<2. 460 C2(x)<2. 547
1 2.460<C1(x)<2.540| 2.547 <C2(x)<2.634
2 2,540 <C1(x) 2.634 <C2(x)
Interval
dCl attribute dC2 attribute
Value
0 dC1(x)<-0.017 dC2(x)<-0,033
1 -0.017<dC1(x)<0.017| -0.033<dc2(x)<0.03
2 0.017<dcl (x) 0.03<dc2(x)

Table 5. Observation table

data
pl
p2
p3
pd
pb
pb
p7
p8
P9
pl0
pll

(@]
—

dcCl

Q
[\"]

dc2

=
—

—_N) = e N == O N O
DN D) O =D O — DD
N~ OO OO = =N
QO N O ~=NO = O NN
O OO WNO WU~ N

[step 31 Simplify the observation Table 5
by reducing the overlapped row as shown in
the Fig. 6. In the Table 6, C1, C2, dC1 and
dC2 become the condition attributes and the
temperature(i.e., dl) obtained experimentally
at one of the specified points becomes the
corresponding decision attribute. From Table

6, a rule can be easily obtained as follows.

IFCl is1 and C2is J and
dCl 1s K and dC2 is L , then dl is M (1)

where I, J, K, L, and M are the discrete
values of Cl, C2, dC1, dC2 and dl that are
determined from Table 4.

Table 6. Reduced table

data Cl dC1 Cc2 dc2 | di
ul 0 1 2 2 1
u2 0 2 1 0 1
u3 1 0 0 0 0
ud 2 2 1 2 2
ub 1 1 0 1 3
ub 1 0 0 2 0
u? 2 2 1 0 4
u8 1 2 2 0 0

[step 4) Construct the discernibility matrix
M(U,B) as shown in Table 7.

B={(C1,dCl, C2,dC2}, (2)
U={ul,u2, 13, 1d,15,16, ul, 8} (3)

Table 7. Discernibility matrix M(U, B)un

part)
ul u2 u3 ud ub ub
o1, | crder. | oc1del a, C1.dc1
ul c2.dc2 | cz.dc2 | ca. ca.dcz | c2
I, crdc1. | o1, CldCl, | Cl.dcl,
2 e ac c2, dcz | c2.dc2 | 2 dez
o3| crac | Terda C1,dcl, dct, 1
c2.dc2 | ce, €2.dc2 dc2 dcz
crda | a. C1, dcl, Cl.dcl. | cl.dol,
wl o dc2 | c2.dc2 c2.dcz | c2
I c1,dc1, dCT. ] cldcl, dcl,
W adce | oc2de dc2 | c2.dc2 dc2
crdcr | cldcl C1. del. dci
) c2,dc2 ac2 | c2. dc2 ‘
Cl,dC1, C1 Cl1,dCl, Cl.dCh. Cr.dcl, |
Y dce c2, dz_ | cader | c2.de2 |
Cl,dcC1, Ct. dci, Ci. dCl. dCl. |
Bl | c2 2,42 | c2.dcz | c2de2 |
[step 5] Find the Discernibility function

from Table 7. The discernibility function can
be induced as like the following example.

FUU, B) = (dC1V QNN CL\VACIV G2\ dC2)
A(CLVACIV C)ON(CIV CVACOA(CLV dCIV C2)
A(CIVACIV CQVACON(CINV dCIN dC2)
=(C1 VdCIV CONA(dCIN Q2N dC2)
A(CIV NV ECON(CINV ACIN dC2)
= (CL AdCOV (dCIAICON ( CLACONV (C2AAC)

(4)
[step 6]
X={xeUldl(x)=dl,} ={ul,u2} in the
set U, and find the corresponding reducts
of wul, u2 by simplifying discernibility

Define a subset
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functions as follows.

Reds* (U ~ {u,}.B) (
= {{C1},{dCl, 2} {dCl, dC2} {C2. dC2}} )

Reds"“(U — {u}, B)= {{C1}) (

Reds*{U,R) (
={{C1). {dCL,, C2.} . {dCL,, dC2) {C2., dC2:})

(o3

)

o

[step 7]
cluster the

Obtain the reducts for X that can
data set U
and then find the corresponding rules by

universe

sclecting the minimum reducts from each

element ul and u2 as follows.
Ruls*(U,B)={{Cl,}} &

[step 8]
from Eq.{8) as follows.

Determine the corresponding rule

IF C1=0, then dl=1 9)

3. Intelligent Temperature Inference

system

3.1 System structure

Generally, the rule base that is determined
from rough set outputs the interval discrete
value. This fact limits the application of the
rule base obtained from rough set theory
because, in many applications, the practical

real values are required. Furthermore, in
case of inconsistent rules (which means that
the rules outputs the different results from
the same condition attributes), the accuracy
of the inferred values has some limitations.
Thus it caan be easily realized that one way

to overcome the problems is to combine the

Tran.rg dats
T det a2

>

Hetwork

change waights by BP
»

Fig. 2, The structure of the rough
neuro-fuzzy system
rough set theory and neural-fuzzy technique
as shown in Fig. 2.

3-2. Inference System for Temperature

using Rough-Fuzzy-Neural Networks
Suppose that a rule at a refrigeration point is
given as follows..

IF C1 s Nand Q2 s Z and dCl1
is Zand dC2 s P, thendl = Y

(10)
where N, 7Z, and P are the discrete values
represented by membership functions in the

Fig. 3.

Deg. of
membership
function

- e >

min (max-min)/3+min (max-min)x2/3 +min max

Fig. 3, Rough membership function

Since the membership functions are

discrete, the inferred output can not be

applied to the real system. Thus it is
necessary to transform rough
membership functions into fuzzy

membership functions (Fig. 4) and the

consequent interval values are

transformed to a real intermediate

value of intervals as follows.

IF Cl is N and C2 is Z and
dCl is Z and dC2 is P, then dl = a

(an
where N, Z, and P are fuzzy membership
is the real

Y. Then
the fuzzy rules can be reconstructed by the

functions shown in Fig. 4 and a
intermediate value of an interval

fuzzy-neural network as shown in the
Fig. 5

In the Fig. 5 we can infer an output vy.
which represents the temperature of a point
in the refrigerator, {from the sensors(Cl, C2)
their ratios(dCl, dC2).
Furthermore we can adjust the membership
degree of condition input (C1,C2,dC1,dC2) by

the following learning algorithm.

and change
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Fig. 4, Fuzzy membership function

Ct ol acy " ;9*‘\\\
- Q—X‘—f'(jt‘u\\

Fig. 5, Neuro—fuzzy network structure

The procedure of the inference of the

neural network shown in Fig. 5 can be

summarized as follows.

vy = A(Gi(x) (:=0,2,3,4) (12)
2x — cal
A :{ 1= =58 ol — calCug
0 , otherwise (13)
..
o= e (14)

hIpy

where x 1s the input value of sensor and
the A(-) represents
function. Also Ca
center and width

fuzzy membership
and Wa

of membership functions,

represents the

respectively. The final inference value can be
determined as follows.

$ e a
=
y: —_— o)
=
2#1'
=

Meanwhile the

i a; (15)

learning procedure of the

network can be explained by defining an
error function in order to adjust parameters
the

neuro-fuzzy network

a (which is decision weights of

in the Fig. 5 ) as

follows.

B = % (d(d — »(n) (6
Aaj=—7)-*ga£j —ﬂ-% g?]‘

= 7 -(di— ) 1, (17)
a;(t+1) = a; () + 4da;(D (18)

The parameters a; are updated with the

da; of Eq.(17) and Eq.(18) to minimize the

error function defined by Eq.(16).

4. Computer Simulation

R R A R B N
T T T N O PR

v V

Fig. 6, Inputs of sensor 1, sensor 2

In Fig. 6 , the input values of sensor
Cl and C2
explanation
And the

obtained by the following equation.

are partly shown for

of

minimum

simulation.
be

computer

reducts can

Ruls (U, B) (19)
U : reduced data set( d1, . . ., d12)
B : C1, dC1, C2, dC2

Using Eq.(12), we can obtain the rules for

dl. The induced rules are shown partly In
Table 8.

Table 8. The part of generated MBL(d1) rule

Cl C2 dC1 dCc2 dl
0 0 - - = 4
- 1 0 - = 4
0 1 1 - = 4
1 0 0 - = 4
1 0 1 1 = 4
1 1 1 1 = 4
0 - 1 1 = 3
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(a) Inference with Rough-Fuzzy Rule
( RMS error = 0.2211 )

(h) After learning
( RMS error = 0.1926 )
Fig. 7, Inference result

Fig. 7(a) shows one of the inference results
obtained from only the rough-fuzzy rules of
Table 8.

result

Also Fig. 7(b) shows the inference

after learning of the fuzzy-neural
network. It can be realized from these results
that the error between the
and the

through iterative learning and the proposed

inferenced result
measured one has been decreased

scheme becomes very effective in estimating

the real temperatures at some specified

locations of the refrigerator.

5. Conclusion

An effective scheme to estimate the
temperatures of the several locations inside a
refrigerator has been proposed in this paper.
this the

advantages to overcome the limitation of the

Especially, scheme has distinct

rough set theory in real applications.
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