• Title/Summary/Keyword: Room fire

Search Result 528, Processing Time 0.021 seconds

Towards a consistant safety format of steel beam-columns: application of the new interaction formulae for ambient temperature to elevated temperatures

  • Vila Real, P.M.M.;Lopes, N.;Simoes da Silva, L.;Piloto, P.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.383-401
    • /
    • 2003
  • Two new formulae for the design of beam-columns at room temperature have been proposed into Eurocode 3, prEN 1993-1-1 (2002), and are the result of great efforts made by two working groups that followed different approaches, a French-Belgian team and an Austrian-German one. Under fire conditions the prEN 1993-1-2 (structural fire design) presents formulae, for the design of beam-columns based on the prENV 1993-1-1 (1992). In order to study the possibility of having, in part 1-1 and part 1-2 of the Eurocode 3, the same approach, a numerical research was made using the finite element program SAFIR, developed at the University of Liege for the study of structures subjected to fire.

A Study on the Improvement of the Evacuation in Ward of the General Hospital (종합병원 병동부 피난환경 개선에 관한 연구)

  • Kim, Woo-Seok;Chai, Choul-Gyun
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.5 s.58
    • /
    • pp.202-208
    • /
    • 2006
  • The purpose of this study is to suggest architectural planning guideline for the improvement of the evacuation environment in a ward. To suggest of guideline, the problem of irrational domestic criteria is searched according to compare National fire code (NFPA101, Life safety code) with Korea building law. This study includes stairs, corridors and exit door etc. but excludes fire facilities. To verify effectiveness of suggested guideline, egress simulation is run that based on databases according to literature survey. The results of this study could be summarized as follow: Suggested guidelines are subdivision(fire partition), evacuation by elevator, secure useful waiting space of elevator hall and smokeproof enclosures, the corridor is divided by fire or smoke barriers corridor from hazardous room, only wheeled items are arranged in corridors of a ward story. The result of computer simulation for suggested guidelines verify that egress time can be decreased 20% or above.

A Study on the Smoke Proof Measure of High Rise Buildings. (건축화재시 피난대책에 관한 연구 -고층건물의 제연을 중심으로-)

  • 이영재;이근영
    • Fire Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 1990
  • This study is to Present the air Pressurization system of staircase as a way to decrease the injury of human life which is suffocated by smoke when the fire break out in building. 1) The best among an air pressurization system of stairshaft Is multiple air Injection system established to be situated an air injection point in each layer. 2) If the air pressurization system is also applied to the elevator accessory room to use commonly, it can prevent from the smoke spreading and pollution inside building caused by stack effect of elevator shaft. 3) For the reasonable and safe escape and air pressurization system must be carried out from the project of basic shape of building under the close cooperation with architect and fire protection expert.

  • PDF

An Experimental Study on the Formation of Smoke Layer of Compartment Fire (건물화재시 연기층의 형성에 관한 실험적연구)

  • 허만성
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 1997
  • The objective of this research is to study the formations of smoke layer in case of several furniture fires such as trashcan, carpet, mattress and wardrobe as a fire starter in a residential room by performing the experimental studies. The uniformly distributed fire in case of carpet showed that the ignition and the initial growth period were relatively short while the fully developed period was considerably long. The concentrated fires such as the trashcan, mattress and wardrobe showed that the ignitions and the initial growth periods were relatively long. The descending speed of the interface height was proportioned to the inflammability of the furniture and the spread of the fire. The time required to come down around 1m was within 1-3 minutes. The Interface heights for the furniture fires were around 1m as the steady state. However, at the time of the maximum temperature, the interface height was lowered to 0.25m-0.75m from the floor. The carbon dioxide concentration reached the highest while the oxygen concentration was minimum.

  • PDF

An Study of Pressure Variations in Smoke Control on Protected Escape Routes Using Pressurization (급기가압 제연 시 전실 내 압력변화에 관한 연구)

  • Kim, Hong-Sik;Oh, Dae-Hee
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.247-250
    • /
    • 2008
  • Pressurization is a method of ensuring that protected escape routes(staircases and lobbies) are kept free of smoke for shelterers and fire fighters by raising the air pressure in these spaces above that in the main part of the building. In this study, to estimate a pressurization, the characteristics of pressure difference in a room, a lobby, an air supply shaft at several building elements are investigated with a window, the (a fire) door and a air supply damper so that information about the importance of these experimental parameters can be obtained.

  • PDF

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

A Study on the Protection of Smoke Control Performance in Building Enclosure to Prevent the Expansion of Smoke in Fire (화재시 연기확대 방지를 위한 건축물 구획공간에서의 방연성능 확보에 관한 조사 연구)

  • Jin, Seung-Hyeon;Kim, Hye-Won;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.91-92
    • /
    • 2019
  • In case of fire in a compartmentalized building area, a number of casualties are caused by smoke production. Accordingly, openings, penetrations and joints in compartmentalized spaces should be secured not only for fire resistance but also for smoke-proofing. However, domestic test regulations stipulate test methods for refractory performance of penetrations and joints, but do not specify separate deferral performance. In the case of openings, the test for the smoke performance exists at room temperature, but the smoke performance at high temperature is not secured, so countermeasures are needed.

  • PDF

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

Investigation of an Apartment Fire - Site Surveys and Burn Tests for Estimation of the Progress on Initial Fire Spread - (공동주택의 화재조사 - 현장조사 및 연소실험에 의한 초기 화재확대과정 추정 -)

  • Nam, Dong-Gun;Hasemi, Yuji
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.120-129
    • /
    • 2009
  • Identification of the exact cause of a building fire is generally difficult, because the source and initially ignited objects are often severely damaged or even lost during the early stages of the fire. We made an experimental attempt to reasonably estimate the burning during the very early stages of a fire, and identify its source and causes. The case we studied was an apartment fire, which occurred in Tokyo, in July 2002. The fire was extinguished just after flashover, and the on-site investigations suggested the fire started from the TV and TV stand, which had been damaged so severely that it was difficult to conclude that the TV was the ultimate cause of the fire, simply from the on-site investigation. We conducted a series of burn tests using a TV and other products identical to those actually used in the apartment. Tests were set-up and procedures were carefully studied to recreate the conditions of the articles that remained, and of the room itself. The tests demonstrated that the conditions in the apartment could be recreated only when the fire started inside the TV and came into close contact with dresser.

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.