• Title/Summary/Keyword: Robust tracking

Search Result 996, Processing Time 0.031 seconds

Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion (학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.

Color Pattern Recognition and Tracking for Multi-Object Tracking in Artificial Intelligence Space (인공지능 공간상의 다중객체 구분을 위한 컬러 패턴 인식과 추적)

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.319-324
    • /
    • 2024
  • In this paper, the Artificial Intelligence Space(AI-Space) for human-robot interface is presented, which can enable human-computer interfacing, networked camera conferencing, industrial monitoring, service and training applications. We present a method for representing, tracking, and objects(human, robot, chair) following by fusing distributed multiple vision systems in AI-Space. The article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguous conditions. We propose to track the moving objects(human, robot, chair) by generating hypotheses not in the image plane but on the top-view reconstruction of the scene.

Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer (퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

A Robust Semi-active Suspension Control Law (반능동 현가시스템의 Robust 제어 법칙)

  • Yi, K.S.;Suh, M.W.;Oh, T.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF

Realtime Vehicle Tracking and Region Detection in Indoor Parking Lot for Intelligent Parking Control (지능형 주차 관제를 위한 실내주차장에서 실시간 차량 추적 및 영역 검출)

  • Yeon, Seungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.418-427
    • /
    • 2016
  • A smart parking management requires to track a vehicle in a indoor parking lot and to detect the place where the vehicle is parked. An advanced parking system watches all space of the parking lot with CCTV cameras. We can use these cameras for vehicles tracking and detection. In order to cover a wide area with a camera, a fisheye lens is used. In this case the shape and size of an moving vehicle vary much with distance and angle to the camera. This makes vehicle detection and tracking difficult. In addition to the fisheye lens, the vehicle headlights also makes vehicle detection and tracking difficult. This paper describes a method of realtime vehicle detection and tracking robust to the harsh situation described above. In each image frame, we update the region of a vehicle and estimate the vehicle movement. First we approximate the shape of a car with a quadrangle and estimate the four sides of the car using multiple histograms of oriented gradient. Second we create a template by applying a distance transform to the car region and estimate the motion of the car with a template matching method.

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

Object Tracking Based on Color Centroids Shifting with Background Color and Temporal filtering (배경 컬러와 시간에 대한 필터링을 접목한 컬러 중심 이동 기반 물체 추적 알고리즘)

  • Lee, Suk-Ho;Choi, Eun-Cheol;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.178-181
    • /
    • 2011
  • With the development of mobile devices and intelligent surveillance system loaded with pan/tilt cameras, object tracking with non-stationary cameras has become a topic with increasing importancy. Since it is difficult to model a background image in a non-stationary camera environment, colors and texture are the most important features in the tracking algorithm. However, colors in the background similar to those in the target arise instability in the tracking. Recently, we proposed a robust color based tracking algorithm that uses an area weighted centroid shift. In this letter, we update the model such that it becomes more stable against background colors. The proposed algorithm also incorporates time filtering by adding an additional energy term to the energy functional.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

A Code Tracking Circuit Using a Linear Clipper-Gaussian Filter As a Countermeasure against Follow Jamming in FHSS Systems (FHSS 시스템에서 추적 재머에 대항하는 선형 제한-가우시안 필터를 이용한 코드 추적 회로)

  • Koh, Dong-Hwan;Kim, Young-Je;Kim, Whan-Woo;Eun, Chang-Soo;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.152-161
    • /
    • 2009
  • As follow jamming signals in a FHSS system cause malfuctioning in the code tracking circuits using early-late gates, we need a code tracking circuit that is robust against the follow jamming signals. In this paper, we propose a code tracking circuit using a linear clipper-Gaussian filter algorithm to remedy the malfunctioning due to the follow jamming signals in FHSS systems. We investigate the mechanism of the malfunctioning of the code tracking circuit and verify that the proposed linear clipper-Gaussian filter metigates the problem through mathematical analysis and computer simulations.