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ABSTRACT

Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this 

paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic 

trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter 

uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm 

was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart. 

Keywords: Learning Control (학습 제어), Non-minimum Phase (비최소 위상), Asymptotic Output Tracking (점근적 추종),

            Inverted Pendulum (역진자)

1. Introduction

Asymptotic output tracking of Non-minimum Phase (NMP)

nonlinear systems has been a popular topic in control theory 

over decades[1-6] with typical applications to aircraft control[1,2].

In case of NMP nonlinear systems, it is well-known that the

perfect output tracking of an arbitrary reference trajectory is 

impossible due to the unstable zero dynamics. Therefore, lots 

of efforts have been put to minimize the assumptions and 

limitations in solving the problems[3-5] or to find an approximate 

solution[1-2]. The prior works about the asymptotic output 

tracking include stable inversion for vanishing trajectories, 

linear approximation around the origin, asymptotic state 

tracking, and etc. In this paper, we pursue the exact solution 

under a minimum assumption on the target system when the 

output trajectory is periodic.

The Iterative Learning Control (ILC)[7-9] has been proven to 
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be very powerful to handle repetitive tasks or periodic 

disturbances since the well-known internal model principle was 

proposed in the 1970s. It has been widely used in servo control 

of rotating machines such as a hard disk drive since most of the 

disturbances are periodic[9]. In the ILC, the underlying 

assumption is that the given system should be a strictly output 

passive, which is not met by the NMP system. In our approach, 

we modified the concept of the passivity and thus, it can handle 

NMP systems. 

For over decades, Inverted Pendulum on a Cart (IPoC) has 

been the most popular benchmark in nonlinear control theory

and application[10]; staring from a simple PID based linear 

controller[11] to the complex nonlinear control[12] and fuzzy‐

neural control[13]. Linear controllers are based on an 

approximated model near the equilibrium with narrow angles

and they cannot fully represent the dynamics of the system. 

Nonlinear control schemes are assumed to be the most 

powerful but most of the prior works have been focusing on the 

regulation problem rather than output tracking or simple 

trajectories of vanishing at both end points. Furthermore, most

nonlinear controllers require exact information of the system 

parameters during the input-output linearization[14]. Fuzzy 

controllers are one of emerging trends but they require more 

knowledge of the system’s behavior and previous experimental 

data along with heavy computations. The proposed controller 

can be classified into a nonlinear controller but it does not 

require the exact system parameters due to the iterative scheme. 

In this paper, we propose a new iterative learning controller 

for a NMP nonlinear system when the desired trajectory is 

periodic. First, the system is stabilized by using a conventional 

state feedback controller after changing the system into the 

normal form[14]. Then, we add a feedforward term using ILC, 

which is updated by the stable inversion using the steady-state 

output tracking error. Like other nonlinear control schemes, we 

need state transformations and state feedback control but our 

method does not require the exact information about the system

parameters. It only needs the nominal value and one period of 

the steady-state output tracking error. Another benefit of the 

proposed learning scheme is that it can also handle external 

disturbances if it is state-dependent or its frequency is a multiple 

of the desired trajectory. 

The performance of the proposed control method was

demonstrated through the simulation results using IPoC, which 

is a typical example of a NMP nonlinear system. The 

convergence of the tracking error for a given periodic desired 

trajectory was demonstrated along with robustness to the 

external disturbances and parameter uncertainties. 

2. Preliminary Results

2.1 Problem Definition

The IPoC is depicted in Fig. 1. It consists of a freely rotating 

pendulum on a cart, which is sliding over a surface. Define the 

variable � and a set of constant parameters � as

� ≜ [�� , �� , �� , ��]� ≜ ��� , �̇� , �, ��̇
�

∈ ℝ�      (1a)

� ≜ [�� , �� , �� , ��]� ≜ ��� , ��, �, ��
�

∈ ℝ� .    (1b)

Then, the dynamic equation of the system is given by 

Fig. 1 Inverted pendulum on a cart and the definition

of the variables and system parameters
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where M(�) ≜ �� + �� sin� �� . Here, �� and �̇� are the 

position and linear velocity of the cart, � and � ȧre the angle 

and angular velocity of the pendulum, �� and �� are the

mass of the cart and the pendulum, � is the length of the 

pendulum, � is gravity, and � is the control effort. We 

omitted the detailed derivation of the mathematical model but 

we can easily find them in the references[11-14]. The system 

model in (2) can be expressed in a general form of the following:

Σ� : �
� =̇ ��(�) + ��(�) �

� = ℎ�(�),
                (3)

where ��, �� ∶ ℝ� → ℝ�, ℎ� ∶ ℝ� → ℝ�. Here, we have a 

couple of comments on the structure of the system. First, the 

system has a relative degree of two. Second, the system is a 

NMP and nonlinear but control-affine system. Third, ��(0) =

0, ℎ�(0) = 0 , ��(�) > 0, � ∈ ℝ� , and the linear 

approximation of the system around the origin is controllable. 

Lastly, all the functions �� , �� and ℎ� are well-defined and 

belong to the class of ��near the origin. 

Our goal is to find a control law which makes the position 

of the cart follow a desired trajectory asymptotically despite of 

the external disturbances and parameter uncertainties, which 

can be described mathematically as below:

Definition 1 (Problem Statement): Consider the IPoC 

system given by (1)~(3). Let a desired output trajectory of 

��,�(�) ∈ ��
� ∩ �� be given. Assume that ��,� , �̇�,�, and �

are measurable and the nominal value of the parameter � is 

known. Then, find a control law � such that ‖�‖� and 

‖�‖� are bounded and ���(�) − ��,�(�)� → 0 as � → ∞.

2.2 Coordinate Transformation

In this section, we will introduce two coordinate 

transformations to change the dynamic equation in (2) into the 

normal form[14] before we move into the design of the control 

law. Let us redefine the output � and the desired output 

trajectory �� as

�(�) ≜ ����(�) + �̇�(�) (4a)

��(�) ≜ ����,�(�) + �̇�,�(�), (4b)

where �� > 0 is a positive constant which makes �(�) ≜

�� + � a Hurwitz polynomial. We can easily see that �(�) →

��(�) implies ��(�) → ��,�(�) and furthermore, the 

relative degree of the system in (2) is changed into one with the 

new output. For the sake of convenience, we will regard ��(�)

and �(�) as the desired output trajectory and the output of the 

system from now on. This change of variables can be expressed 

as the following state transformation function ��
� (�): ℝ� →

ℝ� with a new state variable � ≜ [�� , �� , ��, ��]�,

� = ��
� (�) ≜ [���� + �� , �� , �� , �� cos �� + ���]� . (5a)

Let us consider another linear coordinate transformation

defined by the state transformation matrix ��
� ∈ ℝ�×�

��
� ≜ �

1 0 0 0

0 (√���0 − �)�0 2 (��0

2
− �)⁄⁄ √�� 2⁄ 1 2⁄

0 −(� + √���0
)�0 2 (��0

2
− �)⁄⁄ − √�� 2⁄ 1 2⁄

0 ��0
(��0

2
− �)⁄ 0 0

� (5b)

and transform � to � using ��
� . Then, the composite 

transformation ��
� : ℝ� → ℝ� becomes

� ≜ ��
� (�) = ��

� ∙ ��
� (�).          (5c)

For a better readability, define � ≜ [�� , �� , �� , ��]� ≜

[�, �� , ��
�]� with �, �� ∈ ℝ� and �� ∈ ℝ� . Then, the 

system in (3)can be expressed in the new coordinate as follows:

Σ� : �
�̇ = ��(�) + ��(�) �

� = ℎ�(�),
                (6a)

or more precisely,

Σ� :

⎩
⎨

⎧
� =̇ �(�, �� , ��) + �(�, �� , ��) �

��̇ = ��(�, �� , ��)

��̇ = ��(�, �� , ��)
� = �.

   (6b)

In addition, its linear approximation around the origin can be as
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Σ�,��� : �
�̇ = �� + ��(�) + �(�) �
� = ��,

            (7)

where 

� ≜ ���(0) = �

�� �� ��

�� �� ��
�

�� �� ��

�          (8a)

��(�) ≜ ��(�) − ��                         (8b)

�(�) ≜ [�(�), 0, 0, 0]�                      (8c)

� ≜ [1, 0, 0, 0].                         (8d)

Here, the parameters in the matrix � are given by

�� ≜ ��                                      (8e)

�� ≜ �� �⁄                                   (8f)

�� ≜ �
−�� 0

0 −��
�                           (8g)

�� ≜ −���� �⁄                             (8h)

�� ≜ ����� �⁄ , ���� + �� − ��
� � �⁄ �           (8i)

�� ≜ ������ − ���� (���
� − �)� 2⁄ − �� �⁄ 2⁄   (8j)

�� ≜ �−������ + ���� (���
� − �)� 2⁄ + �� �⁄ 2⁄ ,

��� (���
� − �)⁄ �

�
(8k)

�� ≜ [0, 0].                                   (8l)

Also note that the linear approximation of the zero dynamics of 

(7) and (8) around the origin can be re-written as

  �
��̇

��̇
� = �

�� ��
�

�� ��
� �

��

��
� + �

��

��
� � + �

���(�, �� , ��)

���(�, �� , ��)
�. (9)

From (9) along with the fact that �� > 0, it is much clearer that 

the IPoC system is indeed a NMP system whose zero dynamics 

is driven by the output � of the system. We can also see that 

� cannot follow a general desired trajectory �� with 

guaranteeing the internal stability since �� driven by the 

output � will diverge.

2.3 Existence of the Steady-State Oscillation

Since the proposed control scheme uses an iterative method, 

the existence of the periodic solution is very important. In this 

section, we will introduce some prior works related to the 

existence of the periodic solution in nonlinear systems[7-8]. 

Theorem 1: Consider the following linearized system

around the origin:

�̇(�) = ��(�) + ��(�, �) + �(�, �) �(�).     (10)

Let us assume that the state � ∈ ℝ�, the matrix � ∈ ℝ�×� is 

a Hurwitz matrix, the vector field ��(�, �), �(�, �): ℝ� ×

ℝ� → ℝ� belong to �� , � ∈ ��,�
� (0) , ��(�, �) and 

�(�, �) belong to ��
� with ��(0, �) = 0 and �(�, �) >

0, � ∈ ��,�
� (0), � ∈ ℝ� , and the input �(�) belongs to

��
� ∩ ��. If ‖�‖� is sufficiently small, there exist a closed 

neighborhood � of the origin such that every solution � of 

the system (10), which starts from � , exponentially 

approaches the unique T-periodic solution � ∈̅ ��
�, called the 

steady-state oscillation, satisfying 

‖�‖̅� ≤ ��‖�‖�               (11a)

|�(�) − �(̅�)| ≤ ������� , � ∈ ℝ�.    (11b)

for some positive constants ��, �� , �� > 0.

Proof: By the assumption, we can see that ��(�) +

��(�, �) and �(�, �) satisfy the assumption A1)~A4) in 

Theorem 1 and Theorem 3 in [8] regarding the existence of the 

steady-state oscillation. Here, we choose the Lyapunov 

function �: ℝ� → ℝ� for the assumption A3) in [8] as

���(�)� = ��(�)��(�),            (12a)

where � is a positive definite symmetric matrix satisfying the 

following Lyapunov matrix equation for the given system 

matrix � and a positive definite symmetric matrix �.

��� + �� = −�.              (12b)

Note that the existence of the matrix � satisfying the above

Lyapunov matrix equation is guaranteed by the assumption that 

� is a Hurwitz matrix. ∎

We will use Theorem 1 when we drive the closed loop 

system by a periodic feedforward input to get the steady-state 

output error and update the next feedforward input. 

2.4 Passivity

As explained in the previous chapter, most of the iterative 
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learning schemes use the passivity of the system to guarantee 

the convergence of the error. Unfortunately, the IPoC is not 

strictly output passive since it is a NMP system. To resolve this 

issue, we define a new definition of the passivity for periodic 

functions, which will play an essential role in the convergence 

of the feedforward updates to the desired input.

Definition 2 (T-Passivity): A mapping Η: �� ⊂ ��
� → ��

�

is said to be strictly output passive in T-norm sense if there exist 

a positive constant � > 0 such that 

〈Η[�]|�〉� ≥ �‖Η[�]‖�
� , � ∈ �� .       (13)

Kindly note that the above passivity concept defined over the 

periodic function space is less strict than the conventional

definition of the passivity in that the inequality is required to be 

satisfied for the average over one period.

3. Main Results

3.1 Controller Design

Since the system is converted into the normal form of (6)

through two state transformations together with its linear 

approximation around the origin in (7), let us design a controller 

which makes the output follow the desired output(redefined)

trajectory ��(�). We propose the control law of the form:

�(�) ≜ ���(�) + ���(�)

        = � �(�) + �(�).             (14)

First, we will design a state feedback controller, ���(�) =

� �(�). Choose � ≜ [�, �� , ��] ∈ ℝ� as follows: 

� = (��� − ��) ��⁄ ∈ ℝ�               (15a)

�� = (��̅ − ��) ��⁄ ∈ ℝ�                (15b)

�� = −�� ��⁄ ∈ ℝ� ,                   (15c)

where ��� ≜ ��̅��̅ − � , ��̅ ≜ − 2���� ��⁄ , �� ≜ � + �� , 

��̅ ≜ �� ��⁄ , �� ≜ �(0) = 1 ��⁄ , and � > 0 is a positive 

number. Then, the closed loop system defined by (7), (14), and 

(15) can be expressed as follows:

Σ�,�� : �
�̇ = ��� + ���(�) + �(�) �
� = ��,

      (16a)

where 

�� ≜ � + �(0)�            

= �

��� ��̅ ��

�� �� ��
�

�� �� ��

�               (16b)

���(�) ≜ ��(�) + ��(�) − �(0)���. (16c)

After some mathematical manipulations, we can see that the 

eigenvalues of the matrix �� are all negative and given by

−��(��) = �� , �� , �� , �� > 0.             (17)

Noting that all the function in (16) are locally �� and

���(0) = 0 . We can see that ���(�) satisfies Lipschitz

condition in an open ball ��,�
� (0) and the closed loop system 

given by (16) satisfies all the assumptions in Theorem 1. 

Therefore, it is input-to-state stable and � converges to the 

unique periodic solution � w̅ith ‖�‖̅� ≤ ��‖�‖� for 

some positive constant �� > 0 if the input � is periodic and 

‖�‖� is sufficiently small.

Next, we will design a feedforward controller ���(�) =

�(�). Let us consider the desire state trajectory ��: ℝ� → ℝ�

in ��
� ∩ �� and the desired feedforward input ��: ℝ� →

ℝ� in ��
� ∩ �� given by

�� ≜ ��� , ��,� , ��,�
� �

�
                 (18a)

�� ≜ (�̇� − �(��)) �(��)⁄ − ���,      (18b)

where �� is the T-periodic desired output trajectory and

��,�(�) and ��,�(�) are the periodic and bounded solution of 

the following differential equations:

��̇ = ��(�� , �� , ��)                (18c)

��̇ = ��(�� , �� , ��)                (18d)

with 

���,��
�

≤ ��‖��‖� , � = 1,2.           (18e)

for some positive constant �� > 0. Let us assume that the 

solution of the differential equation (18) exists and given by 

��,� and ��,�. Then, substituting (18) together with (14)~(16)
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into (6b) shows that �� and �� are the solution of the closed 

loop system (16) and �� is T-periodic. Since the system (16) 

satisfies all the assumptions in Theorem 1, this solution is 

unique. However, the problem is that we cannot solve the 

differential equation (18c)~(18e) explicitly for the given �� , 

and that is why the previous works[7,8] assume that the desired 

state trajectory is given or the system is minimum phase. 

Instead, we will solve this problem through an iterative 

approach using the steady-state oscillation given by Theorem 1. 

Define �: ℝ� → ℝ� and �: ℝ� → ℝ� by 

�(�) ≜ ���(�), ���
(�), ���

� (�)�
�

≜ �(�) − ��(�) (19a)

�(�) ≜ �(�) − ��(�),                          (19b)

where �(�) represents the error of the current states from the 

desired state trajectories and �(�) represents the input

mismatch of the feedforward input �(�) from the desired 

feedforward input ��(�). Then, we can express the closed 

loop system in (16) in the new state space as follows:

Σ� : �
�(̇�) = ���(�) + ���(�, �) + �(�, �) �(�)

��(�) = ��(�),
(20a)

where 

�� ≜ ��                               (20b)

���(�, �) ≜ ����� + ��(�)� − ������(�)�

+ ���� + ��(�)� − ����(�)�� ��(�)   (20c)

��(�, �) ≜ ��� + ��(�)�                     (20d)

Let us choose �(�) in (19b) as a T-periodic function with 

sufficiently small ‖�‖� . Then, the error dynamics in (20) 

satisfies all the assumptions in Theorem 1 since �(�) is also 

sufficiently small and T-periodic. By Theorem 1, there exist the 

unique bounded and period solution �(̅�) and �(�) → �(̅�)

as � → ∞. Let us denote �(̅�) ≜ ���̅(�), ��̅�
(�), ��̅�

� (�)�
�

as the steady-state oscillation of the system (20). In addition, 

define a mapping � = Η����̅�, Η�: ��
� → ��

� using the 

below differential equation with a specific initial condition of      

��̅��
(0) = ��̅��

(�) given by

��̅��
(0) = (1 − ����)�� ∫ ���(���)��̅��̅(�)��

�

�
   (21a)

Σ�� : �
�̅̇���(�) = ����̅��(�) + ��̅��̅(�)

�(�) = −��̅��̅��(�) + ��̅(�).
      (21b)

Note that ��̅�� is well-defined and T-periodic. Furthermore, 

we can see that actually, it is a stable inversion of the linear 

approximation of the unstable zero dynamics in (18c) for the 

steady-state oscillation of ��̅. Augmenting (20) into the closed 

loop system in (20) with a new definition of a state variable 

� ≜̅ ���̅, ��̅�
, ��̅�

� , ��̅���
�

∈ ℝ� yields, 

Σ� : �
�̅̇(�) = ���(̅�) + ���(�,̅ �) + ��(�,̅ �) �(�)

�(�) = ���(̅�),
(22a)

where 

�� ≜ �
�� ��

�

��̅, �� ��
�                  (22b)

���(�,̅ �) ≜ ����
�

(�,̅ �), 0�
�

                (22c)

��(�,̅ �) ≜ ���
�(�,̅ �), 0�

�
                  (22d)

�� ≜ [1, 0, 0, 0, −��̅].                 (22e)

Finally, we have the mapping � = Η(�), Η: ��
� → ��

�

which maps the input mismatch to the base function for

updating the feedforward input for each iteration, which will be 

explained later. With some mathematical manipulation, we can 

find that the transfer function representation of Η defined by 

the linear approximation of the system Σ� given by 

��� , ��(0,0), ��� pair is 

��(�) = �� (� + �)⁄ ,               (23)

which is a simple passive system. A rigorous derivation and 

proof of the passivity of the system Σ� , more specifically, 

strictly output passive in T-norm sense, will not be given here

but we will show that this inversion scheme works well without 

a numerical instability issue through the simulation results.

Next, we will present the update rule of the feedforward 

input �(�) in (14). The mathematical description of the 

iterative update scheme for the periodic function ����(�) at 

(k+1)’th iteration is as follows:
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����(�) = ��(�) + ����(�),           (24)

where �� < 0 with a sufficiently small magnitude is called 

the learning gain and ��, the base function for updating the 

feedforward input, is the output of the stable inversion in (21). 

Since the mapping from �� to �� is strictly output passive 

in T-norm sense, we can see that 

������
�

�
= ����

�

�
+ ��

�����
�

�
+ 2���������.  (25)

Using the passivity of the system, for some positive constant 

�, � > 0, we have

������
�

�
− ����

�

�
≤ ��

�����
�

�
+ 2�������

�

�

≤ −�����
�

�
.               (26)

If |��| is sufficiently small, we can see that �����
�

� is a 

decreasing sequence and converges to zero, which means 

�� → 0 and ��̅
� as � → ∞ or ��(�) → 0 as � → ∞.

3.2 Some Practical Considerations

In this section, we will present some practical considerations 

such as robustness to the parameter uncertainties, computation 

time, and etc. when we implement the proposed algorithm. As 

was shown in the previous section, we need some information 

from the system. The assumption on the availability of all the 

state variables is common in nonlinear control but it seems the 

proposed scheme requires the exact information of the system 

parameters for the state transformations in (5), the stable 

inversion in (21), and even the choice of the state feedback gain 

in (15). More precisely, the state transformation ��
� (�)

should be expressed as ��
� (�, �), the state feedback gain �

as �(�), and the stable inversion system Η as Η(�), and etc. 

However, we can use all the system parameters based on its 

nominal value �� instead of the true value � since we find the 

solution iteratively through learning. We can easily show that 

the proposed method works well for a small parameter 

variation through the perturbation analysis. Rather than 

repeating all the above works again through perturbation 

analysis, we will add some comments on the robustness of the 

proposed scheme to the parameter variations during the state 

transformation and the stable inversion while the others will be 

demonstrated through the simulation results in the next chapter.

First, let � = �� + Δ� and substitute this into (5c). Then, 

� = ��
� (�� + Δ�, �) = ��(�� + Δ�)� ��

� (�� + Δ�, �). (27)

Note that (27) along with the smoothness of ��
� and ��

� in 

(5) with respect to �, the above state transformation is well-

defined for � ∈ ���,�
� (0) and Δ� ∈ ���,��

� (��) if ��

and �� are sufficiently small. Furthermore, the inverse 

mappings are also well-defined and

lim
|����|→�

| ��
� (��, ��

��(�, �)� ) − �| = 0, � ∈ ��,�
� (0), (28)

which means the origin is reserved through the mapping. Next, 

the closed loop system in (16) can be expressed as follows:

�̇ = ��(��)� + ���(Δ�, �) + �(�� + Δ�, �) �,  (29a)

where 

��(��) ≜ �(��) + �(��, 0)�(��)

≜ �

���
� ��̅

� ��

��̂ ��� ��
�

��� �� ���

�                 (29b)

���(Δ�, �) ≜ [�(�� + Δ�) − �(��)]� + ��(�� + Δ�, �)

+�(�� + Δ�, �)�(��)[ ��
� (��, ��

��(�� + Δ�, �)� ) − �]

+[�(�� + Δ�, �) − �(��, 0)]�(��)�.            (29c)

Here, parameters with hat(^) such as ���
�, ��̅

� are obtained by 

replacing the system parameters � with �� . Since all the 

functions in (29) are continuous for Δ� , ��(��) is still 

Hurwitz and ���(Δ�, �) satisfies ����(�)� ≤ ��|�| for 

� ∈ ���,�
� (0) and Δ� ∈ ���,��

� (��) for a sufficiently 

small �� and ��. Thus, all the assumptions in Theorem 1 are 

satisfied and thus, all the previous analysis is valid. 

Next, the stable inverse mappingin (21) will be changed into

��̅��
(0) = �1 − ������

��
∫ ����(���)��̅

���̅(�)��
�

�
   (30a)
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Η∆ :  �
 �̅̇���(�) =  �����̅��(�) + ��̅

���̅(�)

      �(�) =  −��̅
� ��̅��(�) + ��̅(�) 

.        (30b)

Note from (30) that ��̅��
is still well-defined and T-periodic 

if ��̅ is T-periodic.

Last comment on the robustness of the proposed scheme is 

about the external disturbances. From (18) and (19), we can see

that if there is any input disturbance which is state-dependent 

or periodic in time with its period of � �⁄ , ��(�) will 

converge to the new ��(�) of ��(�) − �(�) for a 

sufficiently small �(�). We will demonstrate the robustness of 

the proposed scheme to the external disturbance in the next 

chapter through simulations. 

Lastly, the configuration of the proposed iterative learning 

scheme is depicted in Fig. 2 and the flow chart of the algorithm 

is given in Algorithm 1. Once the closed loop system is 

stabilized, we have only to wait for the system to reach the 

steady-state, get one period of the steady-state output error 

��̅(�), and calculate the stable inversion �� for one period to 

update the next feedforward input ����. In addition, for the 

time required to wait until the steady-state or ��� in the 

Algorithm 1, it does not take long; actually, the convergence 

time depends on min{−��(��)} and considering 

min{−��(��)} = �� > �, in practice, �� ≥ 2 is enough. 

4. Simulation Results

In this chapter, we will demonstrate the excellent

performance of the proposed algorithm through simulation. In

the simulation, we use MATLAB Simulink and the simulation 

model is shown in Fig. 3. The parameters of the system are  

�� = 1.378 [kg], �� = 0.051 [kg], � = 9.81 [m s�⁄ ],

and � = 0.352 [m]. We selected the design parameters as 

�� = 10 , � = 10 , and �� = −8. Other controller 

parameters such as the gains of the state feedback controllers 

were chosen based on the nominal values of the system 

parameters. For the desired trajectory, the third order 

polynomial approximation of the rectangular waveform, which 

belongs to ��, was used. The waveforms of ��,� , �̇�,� , and 

�̈�,� for one period are shown in Fig. 4. The initial conditions

of the state variables were chosen as �� ≜

����, �̇��, �� , ��̇�
�

= [0.13, −0.13, −0.1, 0.2].

The simulation results are shown in Fig. 5~Fig. 9. Fig. 5 

shows the tracking error of the system from the desired

trajectoy. As stated in the previous section, �� = �� − ��,�

converges to zero as �� converges to zero, that is, the cart 

(S1) Set � = 0, Set �(�) = ��(�) ≡ 0, � ∈ ℝ�.

(S2) Wait until � = ��� or the closed loop system in (20) 

reaches the steady-state.

(S3) Store the time history of last one period of 

��̅(�), � ∈ [���, (�� + 1)�].

(S4) Calculate ��(�), � ∈ [0, �] using (21).

(S5) Update ����(�), � ∈ [0, �] using (24) and repeat it to 

construct ����(�), � ∈ ℝ�.

(S6) At � = (�� + 1)�, update �(�) =  ����(�), 

increase � by 1 and jump to (S2).

Fig. 2 Proposed iterative learning algorithm

Algorithm 1 : Flow chart of the proposed iterate

update algorithm
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position follows the desired trajectory as the redefined 

output(�) follows the desired output trajectory(��).  Fig. 6 

and Fig. 7 show the trajectories of the cart position/velocity and

the pendulum position/velocity per iteration. As shown in the 

figures, the cart position(��) and velocity(�̇�) converge to 

the reference trajectories while the pendulum position(�) and 

velocity(�)̇ stay bounded. The time histories of the stable 

inversion ��̅��

� and feedforward input �� for each iteration 

are shown in Fig. 8. As explained, ��̅��
is bounded, T-

periodic, and decreasing in magnitude as �� converges to zero.
Fig. 3 MATLAB Simulink model

Fig. 4 Time history of the desired trajectory: 

     ��,�(top), �̇�,�(middle), and �̈�,�(bottom)

Fig. 5 Time history of the cart position error, ��(top) 

     and output(redefined) error, ��(bottom)

Fig. 6 Cart position(top) and velocity(bottom)

Fig. 7 Pendulum position(top) and velocity(bottom)  
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Fig. 8 Stable inversion(top) and feedforward     

input(bottom)

Fig. 9 Tracking error under parameter uncertainties 

and external disturbance

Fig. 9 shows the simulation results to demonstrate the 

robustness of the proposed scheme to the parameter 

uncertainties and external disturbances. It demonstrates the 

convergence of ���
��

�
= ���

� − ��,��
�

per iteration for   

four corner values of the parameters �� , �� , and � with 

±30% variation. �(�) = 0.5 sin(2��) and Coulomb plus 

viscous friction of �����̇�(�)� = 0.5 sgn��̇�(�)� +

0.05�̇�(�) were added as a periodic external disturbance and 

state-dependent disturbances. We can see that the proposed 

algorithm works well under the parameter uncertainties and 

external disturbances, which supports robustness of the 

proposed algorithm. 

5. Conclusion

In this paper, we proposed a new iterative learning control 

scheme for a NMP nonlinear system with its application to the 

IPoC. The design procedure, which includes the state

transformation, the state feedback controller, and algorithm to 

update the feedforward input, was described in detail. 

Furthermore, mathematical analysis on the convergence of the 

tracking error was delivered along with some comments on the 

practical considerations during the implementation. The 

excellent performance of the proposed algorithm was 

demonstrated through the simulation results using a typical 

NMP nonlinear system of the IPoC. 

The derivation of the proposed scheme was done based on 

the IPoC. However, we believe the proposed algorithm can be 

extended into a general NMP nonlinear system with multiple 

input/output, which we will leave for future research topics. 

Appendix A

In Appendix A, we give symbols and notation used 

throughout the paper.

Symbol Description

ℝ� Real coordinate space of dimension �. A 
vector � ∈ ℝ�  is denoted by a column 
vector of � = [�� , �� , … , ��]�. 

ℝ� A set of positive real numbers. 
ℝ�×� A set of real valued matrices of the 

dimension � × �.
��, �� A functional space with �  continuous 

derivatives. ��  represents a functional 
space of infinitely differentiable. 

0 2 4 6 8 10 12 14 16

Iteration

10-2

10-1

100
Tracking Error per Iteration under Parameter Uncertainties and Disturbance
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��,�
� (��) An open ball in ℝ� near �� with a radius 

r. ��,�
� (��) = {�|� ∈ ℝ� , |� − ��| < �}.

��
� A functional space of periodic functions,

ℝ� → ℝ�  with the period � . A function 
� ∈ ��

� satisfies �(� + �) = �(�).
�(̅�) The steady-state response of �(�).

〈�|�〉� Inner product of two functions �  and �  
defined over a functional space in ��

�

with 〈�|�〉� ≜
�

�
∫ ��(�)�(�)��

�

�
.

‖�‖� T-norm defined over a functional space in 

��
� with ‖�‖� = �〈�|�〉� .

‖�‖� Supremum norm of a function � defined 
on �  in a normed vector space. ‖�‖� =
sup{‖�(�)‖: � ∈ �}.

��(�) Eigenvalues of a square matrix �. 
�� , ��×� � -dimension row vector and � × �

matrix with all zero elements. 
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