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Abstract 
 
We propose a robust visual object tracking algorithm fusing a convolutional neural network 
tracker trained offline from a large number of video repositories and a color histogram based 
tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of 
occlusion and large movements of the CNN based GOTURN generic object tracker. The key 
idea is the offline training of a binary classifier with the color histogram similarity values 
estimated via both trackers used in this method to opt appropriate tracker for target tracking 
and update both trackers with the predicted bounding box position of the target to continue 
tracking. Furthermore, a histogram similarity constraint is applied before updating the 
trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target 
object by one of the prominent unsupervised monocular depth estimation algorithms to 
ensure the necessary 3D position of the tracked object to mix the immersive audio into that 
object. Our proposed algorithm demonstrates about 2% improved accuracy over the 
outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. 
Additionally, our tracker also works well to track multiple objects utilizing the concept of 
single object tracker but no demonstrations on any MOT benchmark. 
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1. Introduction 

Tracking objects of interest as an application of immersive audio-based cinema is a cutting 
edge video capturing technology. In the object-based audio technique, specific soundtracks 
are mixed with the objects rather than with specific channels using object 3D location, 
start/end times and other metadata information. The existing audio mixing technologies 
manually use some input device (e.g. puck) to determine the object 3D position and then mix 
the corresponding soundtracks. Ambisonics is one of the popular audio applications for 
handling and delivering full-immersive object-based audio. In our system, we apply two 
newfangled 2D object tracking algorithm and a depth estimation algorithm to excerpt the 
trajectory(XYZ) of the objects automatically and thereafter the specific soundtracks are 
assigned throughout the shot or scene of the cinema video. 

Visual object tracking is the problem of estimating the trajectory of an object over time 
by locating its position in every frame of the video. It is considered as one of the 
fundamental problems in the field of computer vision. The escalation of high specification 
computers, high-resolution reasonable cameras, and highly dependent video analysis-based 
applications drive research in object tracking. To date, object tracking is pertinent to the 
tasks of motion-based recognition, automated surveillance [1], video captioning [2], human-
computer interaction [3], traffic monitoring [4], and autonomous vehicles [5, 6]. 

Although several real-world applications are facilitated by object tracking algorithms 
there are still many observed difficulties in tracking due to abrupt object motion, changing 
appearance patterns of both the object and the scene, non-rigid object structures, object-to-
object and object-to-scene occlusions, and camera motion [7]. For decades, researchers have 
developed and tried several tracking algorithms in an attempt to solve these different object 
tracking challenges. For example, Zhang et al. [8], Pan and Hu [9] and Yilmaz et al. [10] 
proposed algorithms to handle occlusion in the scene. Similarly, Zhong et al. [11], Adam et 
al. [12], and Babenko et al. [13] proposed algorithms deal with the problem of illumination 
variations. Despite all the research that has been done to mitigate all of the tracking 
challenges, not one the tracking algorithms has been adequate enough to meet these 
challenges. 

This paper’s scope examines visual object tracking where the object’s coordinates are fed 
into the system as a bounding box at the beginning of the frame sequence and then using 
tracking algorithms try to automatically track an object in consecutive frames. The workflow 
of the visual object tracking is shown in Fig. 1. Early object tracking algorithms are mainly 
concentrated on the feature extraction, searching method, and similarity comparison. 
Statistical techniques [14, 15, 16] and non-statistical techniques [17] are used as a feature 
extraction method. Particle filter [18] and mean-shift [19, 20] algorithms are usually used for 
searching the object location. The rapid development of the deep learning networks gives a 
new dimension in the object tracking research. Automatic feature extraction of the CNN 
based algorithm shows enviable performance compared to the earlier standard methods. DLT 
[21] was the first to introduce the deep learning concept in the task of visual object tracking. 
It performed the training in an offline manner.  The combination of generative and 
discriminative tracking approach makes this method more expressive in terms of image 
representations than the traditional methods based on principle component analysis (PCA). 

These days, mainstreaming of visual object trackers is generally learned online (i.e. 
during test time) without performing any offline training [17, 13, 22, 23]. The tracking 
performance of such trackers is not satisfactory due to unexploited the available video 
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resources. In [17], an online adaptive tracker is proposed that uses a kernelized structured 
output support vector machine. Kalal et al. [23] proposed an approach that perform long-
term tracking of unknown objects into three phases: tracking, learning and detection. They 
impose a new learning method P-N learning to handle the detector’s error if needed. MDNet 
[24] and C-COT [25] are two CNN-based trackers that are trained online and exhibited, the 
best performance in VOT2015 and VOT2016 challenges, but the speed is below real-time 
performance. Another recent CNN-based tracker GOTURN (Generic Object Tracking Using 
Regression Networks) performs target tracking in real-time through offline training [26]. 
GOTURN is principally a regression-based approach that only needs a single forward pass 
through the network to regress the target location without fine-tuning. This network learns 
from the generic relations of object’s appearance and motion through the offline training 
from huge available data and videos. During tracking, target template and search regions are 
fed to five individual CNN layers and deep features from two streams are fused into three 
shared FC layers. These two factors, offline training and single-pass regression accelerate the 
object tracking speed to 100 fps. Despite GOTURN have achieved enviable performance, the 
target occlusion missed the target to track because of rapid target interactions. Fig. 2 is an 
example of an occluded scene during tracking by GOTURN tracker. 

 

 
Fig. 1. A procedure flow of detection-free tracking approach 

 

 
Fig. 2. A scenario of drift case in GOTURN tracker . Left: Target object with bounding box  (Red) 
Middle: Another object occluded with the target object Right: Target changed to another object. 

 

In this paper, we propose a visual object tracking system using a color histogram-based 
tracker mean-shift is fusing it with GOTURN to improve the overall accuracy of the object 
tracking system. This successfully provided an improved tracked bounding box position of 
the target object where GOTURN fails to track the right target. Our algorithm can handle the 
occlusion and large movement problems that occur in the GOTURN tracker that is depicted 
in section 4.1. We used Godard et al. [27] algorithm to construct the lost information (depth) 
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from the 2D image by calculating the range from a projected point to image plane where 
only a single input image is required without any perception about the geometry of scene or 
type of objects present. Our proposed algorithm was investigated on the challenging 
VOT2014 [28] and VOT2015 [29] benchmarks. 

Our proposed tracking algorithm also works for multiple target tracking. In recent years, 
some deep learning-based approaches have been developed in multiple-object tracking [30, 
31, 32], but performances are not worth mentioning other than the handcrafted features 
founded techniques. Constructive thinking leads us to apply deep learning based single 
object tracker to MOT (Multiple Object Tracking). The qualitative results of multiple object 
tracking are found in section 4.1. 

The subsequent sections are organized in the following ways. Related work is discussed 
in section 2, and presentation of our proposed approach is detail in section 3. Section 4 
shows the experimental result and related illustrations. Finally, the conclusion is discussed in 
the last section. 

2. Related Work 
In this section, we discuss about the recent cutting-edge approaches related with visual 
object tracking. A visual object tracking technique functionally entails with two core 
components: a motion model that projects the set of probable object position in the current 
frame by learning the estimation from the previous frames (e.g., Kalman filter [19] and 
particle filter [33, 34]); and an observation model that verifies the probable candidate regions 
based on the appearance information of the target for fixing the target position [35]. 

 In the context of the observation model, tracking algorithms are broadly characterized 
as a generative or discriminative mode. In the generative approach, the tracking task is 
formulated as searching for the image regions most similar to the target model. A decent 
number of tracking algorithms have been proposed that follow the generative approach 
including template-based [19, 36, 37], sparse representation [38, 39], density approximation 
[40, 41], and cumulative subspace learning [42]. In the discriminative approach, the target 
object and background distinguishable model were built. These types of tracking algorithms 
characteristically learn classifiers based on multiple instance learning [43], P-N learning [23], 
online boosting [44, 45], and so on. 

In the last couple of years, correlation filters have increased focus in visual tracking areas 
in terms of computational efficiency and enviable performance. Initially, CF(correlation 
filters) were inept for online tracking due to training limitations but the problem has largely 
been solved after the development of MOSSE [46] filter that was capable of adaptive 
training, and [47], a fast correlation filter capable of running on 100 fps that was designed 
with MOSSE filter. Another online adaptive tracker STRUCK [17] uses a kernelized 
structured output support vector machine to avoid the intermediate classification step and 
prevents to many training data through online learning and budgeting mechanism. Henriques 
et al. [15] articulated kernelized correlation filters (KCF) via circular matrices, and multi-
channel features which are incorporated in a Fourier domain efficiently. A notable number of 
trackers have been developed considering KCF as baseline tracker including [48, 49]. 
Danelljan et al. [48] proposed an approach DSST(Discriminative Scale Space Tracking) that 
can estimate scaling and translation using separate independent correlation filters. The 
temporal memory model based tracker MUSTer [49] performances are satisfactory in 
constrained environments, but their low-level hand-designed features selection is susceptible 
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in a dynamic environment including lighting variations, occlusion, deformations, etc. In [50] 
the authors proposed a discriminative object appearance model built on color representation 
and [20] presents a scale adaptive mean-shift tracking algorithm, both lightweight methods 
demonstrate noteworthy performance with vigilantly selected color features that are also 
suitable for deformable objects. A single-object tracker STAPLE(Sum of Template and 
Pixel-wise Learners) is introduced in [51], which used correlation filters to handle 
illumination changes and a color model to handle shape deformations. The P-N learning 
based framework TLD [23] aims to tackle the drift problem that arises during tracking by 
evaluating the detector in every frame and continually updating the model till the last frame. 

 Despite this, CNN based algorithms are successful in many promising tasks  of 
computer vision. For instance, image classification, object detection, object recognition and 
many more, as yet only a few tracking algorithms use these CNNs representations [52, 53, 
54]. Early CNN based tracking algorithm [55] was limited to track only predefined target 
classes, [53] suffered  performance compare to tracker based on hand-crafted features due to 
lack of training data. Approaches in [52, 54] are trained on large dataset, but their 
performance is satisfactory only for classification and not tracking. A CNN based multi-
domain learning network [24] trained on data originated from different domain and perform 
domain-independent online visual tracking.  In [25] a CNN tracker C-COT is proposed 
where the learning problem is presented in the continuous spatial domain through an implicit 
interpolation model. This method gains superior results in object tracking but very slow at 
the test time (1 fps on GPU). Martin et al. [56] uses the perception of C-COT [25] to reduce 
the algorithmic redundancy by combining the deep features with the hand-crafted features. 
Generally, Siamese network-based methods perform learning by exploiting the variations of 
object appearances and try to yield the similarities between target templates and candidate 
templates. GOTURN [26], SINT(Siamese Instance Search) [57], YCNN [58] are some of the 
notable existing Siamese-based trackers. A generic object tracker GOTURN [26] deals with 
the limitations of the C-COT [25] algorithm. GOTURN can track generic objects in real-time 
(100 fps on GPU) by learning the object’s motion and appearance relationship in an offline 
manner. Even though this tracker can handle complex challenges in data like rotations, 
illumination changes, and viewpoint changes, it still does not perform well in cases of long-
term occlusions and large movements of the target. 

In this paper, we devise an object tracking algorithm fusing a color histogram-based 
object tracker mean-shift with GOTURN to improve the tracking accuracy. We use the 
ground-truth bounding box information of target objects in the first frame and the target is 
tracked by looking for the best-matched region using offline trained appearance and/or 
motion model and color histogram of our searching area. The proposed system can handle 
the occlusion and large movement problem with greater accuracy than GOTURN [26]. 

Over the years, researchers proposed a lot of approaches for image depth estimation 
assuming the availability of multiple observations of the scene of interest. To overcome 
these shortcomings [59, 60],  the monocular depth estimation problem is considered as a 
supervised learning problem where each image pixel depth is directly predicted using an 
offline trained model. So, these methods are not feasible for vast applications because a huge 
ground-truth depth data is required. Godard et al. [27] approach depth estimation in an 
unsupervised way where training is accomplished like an image reconstruction problem and 
their fully convolutional model trained to synthesize depth as an intermediate rather than any 
depth data. Because of our system solely depends on a single image without any information 
about the geometry of scene and object types that is why we focus primarily on monocular 
depth estimation. 
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3. Proposed Approach 
This section describes the details of our proposed architecture regarding the tracking 
algorithm for visual object tracking and depth(z) estimation for mapping audio to 3D objects. 
We employ the GOTURN algorithm which is a CNN model-based object tracker and the 
mean-shift tracking algorithm is fused with GOTURN to give the color information and 
lower the probability of object tracking failure. We train the classifier based on the dataset, 
VOT2014, and VOT2015 used in the VOT (Visual Object Tracking) Challenge [28, 29]. We 
then used this classifier to choose the tracker by comparing the histogram similarity of the 
objects appearing in the current frame during the test time. Our proposed approach is 
portrayed in Fig. 3. 
 

 
Fig. 3. Proposed approach of visual object tracking and depth estimation for automatic mixing of 

immersive audio into cinematography 

Our working process comprises the following main steps: 
 
1. Marking the intended object in the current frame through bounding-box as an input to 

the system.  
2. Calculating the four-color histogram similarity of the bounding-box area marking in the 

current frame by running two trackers used in this system. 
3. The histogram values are pass to the already trained SVM classifier to choose a tracker 

between two trackers GOTURN and mean-shift for tracking. The tracker will return the 
x and y positions of the corresponding object. 

4. Estimate the depth(z) which is basically the distance between the observer position and 
object position in the image plane via outperforming unsupervised monocular depth 
estimation algorithm. 

5. After getting the object 3D trajectories (x, y, z), transform to spherical (r, θ, 𝜑𝜑 ) 
coordinates using the following formula: 

𝑟𝑟 =  �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 
𝜃𝜃 =  tan−1

𝑦𝑦
𝑥𝑥
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𝜑𝜑 =  tan−1
�𝑥𝑥2 + 𝑦𝑦2

𝑧𝑧
 

6. Using one of the object-based audio formats for mixing the specified soundtrack to the 
tracked object. 

 

Our proposed approach mainly focused on visual object tracking and depth estimation for 
extracting the 3D positions of an object and finally, 3D audio mapping to the corresponding 
object, which are elucidated in detail in the following subsections. 

3.1 Classification 
In our paper, we alternate between two trackers to improve the accuracy of the tracking. By 
comparing the similarity between the histogram of the current frame bounding box with the 
histogram of the base frame and the third previous frame, the system chooses the tracker. We 
deploy SVM (Support Vector Machine) as a binary classifier to choose one tracker between 
the GOTURN [26] and mean-shift based tracker [20]. SVM is an algorithm for finding 
optimal linear boundaries that linearly separate the data to be classified based on the labeled 
training data. The SVM outputs an optimal hyperplane which classifies new examples. For 
the binary classification the optimal hyperplane is, 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0 and every data points on 
the 2D space satisfy the following classification criterion: 
 

𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1                                                                           (1) 
 
Where 𝑦𝑦𝑖𝑖 ∈ {1,−1} is the label of feature vector 𝑥𝑥𝑖𝑖 ∈  𝑅𝑅𝑛𝑛 and (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1 … .𝑚𝑚 refers to 
the training data set. 

The main strength of SVM is calculating the hyperplane for the higher dimensional space 
using the kernels for the non-linear separable data-set [61]. Some of the kernel are as follows: 
 

Polynomial kernel: 𝑘𝑘(𝑥𝑥,𝑦𝑦) = (𝛼𝛼𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑                                                                   (2) 
 
Where the adaptable parameter 𝛼𝛼 is denoted as slope, constant term is 𝑐𝑐, and the polynomial 
degree is 𝑑𝑑. 

Exponential kernel: 𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− �|𝑥𝑥−𝑦𝑦|�
2𝜎𝜎2

)                                                             (3) 
 
Where the parameter 𝜎𝜎 is regulating and need to be estimated carefully. An example of SVM 
classification is shown in Fig. 4, where hyperplane H2 and H3 classify the two categories of 
data sufficiently but H3 is the optimal hyperplane which maintains the highest margin. 

                                                   

Fig. 4. An example of SVM data classification  
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During training, we constructed four histogram similarities and one label in the SVM 

learning data form. The histogram similarity is computed by the correlation method as 
shown in equation (4). The parameter ℎ1 and ℎ2 are two same size array of histogram and 𝑏𝑏 
is the total number of histogram bins. 
 

𝑆𝑆(ℎ1,ℎ2) =  ∑ (ℎ1(𝑖𝑖)− ℎ1����)𝑖𝑖 (ℎ2(𝑖𝑖)− ℎ2����)
�∑ (ℎ1(𝑖𝑖)− ℎ1����)2𝑖𝑖 ∑ (ℎ2(𝑖𝑖)− ℎ2����)2𝑖𝑖

, where ℎ𝑥𝑥��� =  1
𝑏𝑏
∑ ℎ𝑥𝑥(𝑖𝑖)𝑖𝑖          (4) 

 
We consider four histogram similarities by comparing the histogram of the bounding box 

area in the first frame(t=0) and the tracked bounding box area found in the current frame(t=n) 
using GOTURN tracker and mean-shift tracker, and comparing the histogram of the third 
previous frame(t=n-3) and the current frame(t=n) using GOTURN and mean- shift tracker, 
shown in the Fig. 5. 
 
 

Fig. 5. Procedure of frame selection for histogram comparison 
 
 

The label required for training SVM classifier is based on the value of IoU (Intersection 
over Union). IoU is an index to judge the accuracy of object detection by the ratio of the 
intersecting area and the union area of the two bounding boxes. Fig. 6 and equation (5) 
depict the concept of IoU. In our experiment, the IoU values are the contrast between the 
resultant coordinates of the GOTURN and mean-shift tracker with the ground truth values. If 
both cases the IoU becomes 0, the distance of the tracker and ground truth is chosen as the 
label. 
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐴𝐴𝐺𝐺 ∩ 𝐴𝐴𝑇𝑇
𝐴𝐴𝐺𝐺 ∪ 𝐴𝐴𝑇𝑇

                                                                    (5) 
 
Where AG denotes the area of the ground-truth bounding box and AT denotes the area of the 
tracked bounding box. 
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Fig. 6. Intersection over union (IoU) 

 

Fig. 7 shows the tracker selection procedure. We use SVM to learn data using histogram 
similarity and labels using IoU and choose whether to use GOTURN or mean-shift tracker 
for the tracking. After selecting the tracker by the SVM we calculate the histogram similarity 
of the tracked area and compare it with a threshold value to update the value of the trackers 
for future tracking. Besides, the mean-shift tracker traces the object using only the initial 
histogram model, which causes the bounding box to jump to a place other than the tracked 
object. In Fig. 7, the movement distance of the bounding box is named mean-shift distance. 
If the bounding box moves beyond the threshold value in the previous frame and the current 
frame by giving a threshold value according to the resolution of the image, the GOTURN is 
initialized at the previous bounding box position. The higher the resolution of the input 
image, the greater the change in the position of the bounding box when the object moves. 
Therefore, the threshold proportional to the input image size is set as shown is equation (6), 
where 𝐼𝐼𝑤𝑤 and 𝐼𝐼ℎ are width and height of the input image 𝐼𝐼, respectively. 
 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  �𝐼𝐼𝑤𝑤2 +  𝐼𝐼ℎ2 100�                                                      (6) 
 

And if the brightness level of the image is greater than 8 or less than 3, it is initialized with 
GOTURN to increase the tracking accuracy. The brightness is linearly divided into 1 ~ 10 
levels. 

Input Sequence & Data

Image Sequence

4 Hitogram 
Similarity Data

Brightness Level 4-7?
Or

Mean-shift Distance <
 Threshold

Mean-shift Condition Check Histogram Similarity 
Comparison

HS > 0.8

HS > 0.8

Yes

SVM
Classifier

Tracker Selection

GOTURN

Mean-shift

Update Tracker

Update 
Mean-shift 

Target Model

Continue

Update 
GOTURN 

Target Model

Yes

Yes

No

No

Fig. 7. The tracker selection and model updating procedures 
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3.2 Tracker 
Trackers are used to locate novel objects marked in one frame of a video into subsequent 
video frames and maintain their trajectories till the end. In this work, we design a tracking 
algorithm via two existing prominent single object tracker GOTURN and mean-shift that 
exhibits better performance in visual object tracking. The subsequent parts cover the concept 
of these tracking algorithms. 

3.2.1 GOTURN 
The leading real-time tracking capable CNN based generic object tracker is GOTURN, a 
model trained from several labeled videos and images not having the use of the target objects 
class labels or types being tracked. The GOTURN framework generically develops the 
object’s appearance and motion relationship to the network training in an offline manner 
which helps the network to run in real-time [26]. The network architecture of GOTURN is 
described in Fig. 8. 

 
Fig. 8. GOTURN network architecture for single object tracking. 

 

During operation, the human observer initializes the tracker with the first frame bounding 
box information. At each subsequent frame n, the network receives the image crops from 
frame n-1 and frame n respectively as an input to predict the object location in the nth frame. 
we select randomly contiguous frame pairs in the learning phase, cut the object region to be 
tracked in the previous frame, cut the same area in the current frame, and learn information 
about the object and its surroundings in the convolution layer. Thus, we learn how to predict 
the bounding box position in the current frame by sharing two convolution layer weight 
values in the connected layer. 

Therefore, it is possible to track an object at high speed using only offline learning data. 
However, if there is no motion information and some of the tracking objects are obscured by 
other objects, the performance is significantly degraded. Also, once a trace fails, it will 
continue to track based on the location of the failed trace. Therefore, in this study, we 
decided that the initial set object will be tracked again if the GOTURN has the color 
information of the initial setting object even when the tracking fails. To compensate for the 
disadvantages mentioned above, the mean-shift algorithm is used. 
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3.2.2 Mean-shift 
Mean-shift is a method of locating the mean of data distribution, in which data is moved in 
the densest direction around the current one. When the mean-shift is used in object tracking, 
the color histogram of the specified object is compared with the input image histogram to 
find the region having the most similar histogram. In the mean-shift based real-time tracking 
approach [62], the Bhattacharyya coefficient metric is used for target localization. The 
maximum Bhattacharyya coefficient value gives highest similarity among the pdf 
(probability density function). The probability density function of the target model and target 
candidate is represented by equation (7) and (8). An example of mean-shift tracking is 
visualized in Fig. 9. 
 

Target model:             𝑞⃗𝑞 =  {𝑞⃗𝑞𝑢𝑢}𝑢𝑢=1…..𝑚𝑚,   ∑ 𝑞⃗𝑞𝑢𝑢 = 1𝑚𝑚
𝑢𝑢=1                                                    (7) 

 
Target candidate:     𝑝𝑝(𝑦𝑦) =  {𝑝𝑝𝑢𝑢(𝑦𝑦)}𝑢𝑢=1….𝑚𝑚,∑ 𝑝𝑝𝑢𝑢 = 1𝑚𝑚

𝑢𝑢=1                                             (8) 
 

In these equations, m is the number of discrete bin used for color distribution in 
histogram, 𝑞⃗𝑞𝑢𝑢 is the density function of the color/texture feature u of target model centered at 
origin, and 𝑝𝑝𝑢𝑢(𝑦𝑦) represents the candidate density centered at location y. 

The Bhattacharyya coefficient is expressed in equation (9), which is a similarity measure 
between the distribution target model 𝑞⃗𝑞 and target candidate 𝑝𝑝(𝑦𝑦) at location y. 
 

Bhattacharyya coefficient:  𝜌𝜌[𝑝𝑝(𝑦𝑦), 𝑞⃗𝑞] =  ∑ �𝑝𝑝𝑢𝑢(𝑦𝑦)𝑞⃗𝑞𝑢𝑢𝑚𝑚
𝑢𝑢=1                                                (9) 

 
The Hellinger distance estimates the difference between two probability distributions  𝑞⃗𝑞 and 
𝑝𝑝(𝑦𝑦). 
 

Hellinger distance: 𝐻𝐻(𝑝𝑝(𝑦𝑦), 𝑞⃗𝑞) =  �1 − 𝜌𝜌[𝑝𝑝(𝑦𝑦), 𝑞⃗𝑞]                                                        (10) 
 

 
Fig.  9. Visual procedure of mean-shift tracker 

In this paper, we apply a robust scale-adaptive mean-shift tracking algorithm [20], which 
is flexible in color-based object tracking and search radius. This algorithm is the same as 
finding the center point of the mean-shift tracker. However, after searching the center point, 
it changes the scale of the window size and finds the window size with the highest histogram 
similarity degree of the specified object. It shows higher performance than the conventional 
mean-shift tracker. 
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3.3 Depth Estimation 
To mix a soundtrack to a particular object, we need to estimate the third dimension, the 
depth(z) of that object. We are looking for a depth estimation method where only one image 
is taken as input without any ground-truth depth data. Godard et al. [27], proposed an end-to-
end monocular depth estimation network where in the convolution neural network is trained 
with an innovative loss function that enacts left-right consistency among the disparity images 
not having the help of ground truth data supervision. Its operation is described in the 
following steps: 
 
1) Depth calculation in the form of image reconstruction 
In the time of training, the perception of depth calculation by way of image reconstruction is 
that in the presence of two rectified binocular cameras by learning a function an image can 
reconstruct from another image that will aid to learn the 3D geometry of the scene. Then 
using this reconstruction information, the system can forecast the image pixel depth, 
𝑑̂𝑑 =  𝑏𝑏𝑏𝑏 𝑑𝑑� , where, d is a scalar quantity belongs to every pixel denoted as image disparity, 

and b is the physical space among the cameras and camera focal length f. 
 
2) Depth Estimation Network  
A bilinear sampler is used in this network to generate the predicted image with backward 
mapping resulting in a completely differentiable image construction model as depicted in Fig. 
10. 
 

 
Fig. 10. Backward mapping using left images to make disparities for left and right image 

 
3) Training Loss 
The total training loss C by combining a loss 𝐶𝐶𝑠𝑠 at different scale s, establishing the equation, 
𝐶𝐶 =  ∑ 𝐶𝐶𝑠𝑠4

𝑠𝑠=1  and 𝐶𝐶𝑠𝑠  as a combination of three main components, appearance matching loss, 
disparity smoothness loss, and left-right disparity consistency loss. 
 

𝐶𝐶𝑠𝑠  =  𝛼𝛼𝑎𝑎𝑎𝑎�𝐶𝐶𝑎𝑎𝑎𝑎𝑙𝑙 + 𝐶𝐶𝑎𝑎𝑎𝑎𝑟𝑟 � + 𝛼𝛼𝑑𝑑𝑑𝑑�𝐶𝐶𝑑𝑑𝑑𝑑𝑙𝑙 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑟𝑟 � + 𝛼𝛼𝑙𝑙𝑙𝑙�𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑙𝑙𝑟𝑟 �                                  (11) 
 

Where 𝐶𝐶𝑎𝑎𝑎𝑎  inspires the similar appearance of the input and reconstructed images, 𝐶𝐶𝑑𝑑𝑑𝑑 
imposes disparity smoothing, and 𝐶𝐶𝑙𝑙𝑙𝑙  denotes the consistency between left-right image 
disparities. 

The visual output of the dense depth estimation of a particular scene using Godard et.al 
[27] algorithm is shown in Fig. 11. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020                        1133 

 

 
Fig. 11. Qualitative results on a particular video scene with thin structures 

 
4)  Extract object depth value 
The x and y coordinates can be obtained by taking the center coordinates of the bounding 
box, but the depth value is quite erroneous when obtaining the values of the center 
coordinates due to the noise that is often generated. Therefore, in this paper the average 
value of all depth values inside the bounding box estimated by the tracker is extracted as the 
depth value(D). 
 

𝐷𝐷 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖∈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  /∑ 𝑖𝑖𝑖𝑖∈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵                                                               (12) 
 
 

Where 𝑑𝑑𝑖𝑖 denotes depth value of the pixel i in the bounding box. 

4. Experimental Results 
In this section, we will show the visual object tracking results applying our proposed tracker 
and the qualitative result of depth estimation to make immersive audio founded cinema and 
rigorously analyze the results. A deep learning framework Caffe is used for the experiment. 
The experimental computer specifications are as follows: CPU is Intel corei7-7700@ 
3.60GHz x 8, GPU is Nvidia GeForce GTX 1080 Ti/PCIe with cuDNN acceleration, and the 
memory is 16 GB. The underlying operating system is Ubuntu 16.04 LTS and RGB-D 
sensors for assisting depth estimation. In our experiment, we use VOT2014 [28] and 
VOT2015 [29] dataset from visual object tracking challenges. The dataset comprises 25 and 
60 sequences with objects in challenging backgrounds and selected from the popular ALOV, 
OTB2, and some non-tracking datasets. To evaluate the object tracking performance of the 
proposed algorithm, we employ IoU as an evaluation metric. The details are depicted in 
section 3.1. 

4.1 Results 
As a test data set, we used VOT2014 benchmark with 25 video sequences used in the Visual 
Object Tracking VOT2014 Challenge [28]. We compared our proposed technique with four 
other state-of-art trackers: GOTURN [26], TLD [23], Mean-Shift [20] and STRUCK [17]. 
The total number of video frames is 10214 in the VOT2014 benchmark. We consider 
tracking of an object successful when the value of IoU is greater than 50% otherwise it is 
considered as unsuccessful tracking. 

For the performance analysis the average IoU was calculated on each sequence of the 
VOT2014 benchmark by the aforementioned trackers:  GOTURN, TLD, Mean-Shift, and 
STRUCK. Table 1 and Fig. 16 present the tracking performance achieved on each of the 25 
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video sequences of the VOT2014 challenging dataset through the trackers declared here 
along with the proposed tracker. The number of frames successfully tracked by each tracker 
is as follows: GOTURN  (6151), TLD (1578), Mean-shift (2960), STRUCK (2950) and Ours 
(6178). Therefore, the overall accuracy of each trackers is as follows: GOTURN (48.88%), 
TLD (19.39%), Mean-shift (30.91%), STRUCK (28.79%) and Ours (50.50%) respectively. 
From the experimental results it is evident that our proposed tracker exhibits the best 
performance among the above-mentioned trackers. 

We also tested our proposed algorithm on a cinema video and 360-degree drama to prove 
the rationality of this work. The testing results are shown in Fig. 12 and Fig. 13. We can see 
that the 3D coordinates of the object selected at the first frame are continuously and 
accurately extracted. Additionally, some example video sequences are shown in Fig. 14 and 
Fig. 15, where the performance is significantly improved and degraded over the other four 
trackers. 
 

 
Fig. 12. The extracted 3D positions of the target object in the successive frames  

 
 

 
 

Fig. 13. The extracted 3D positions of the target object in the 360-degree drama frames 
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Fig. 14. Examples of improved performance compared to other four trackers on VOT2014 benchmark 

Fig. 15. Examples of degraded performance compared to some other trackers from VOT2014 
benchmark 
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(a) 

 

 
(b) 

Fig. 16. (a) Video sequence wise IoU average comparison of VOT2014 challenging dataset (b) The 
overall tracking accuracy of compared trackers and our proposed tracker on VOT2014 challenging 

dataset 
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Table 1. Performance comparison based on each video sequence 

Video 
Sequence 

Total IoU Average (%) # of Successfully Tracked Frames 

Frame 
GOTURN TLD Mean 

shift STRUCK Ours GOTURN TLD Mean 
shift STRUCK Ours 

Number 

1 603 76.93 27.36 77.26 37.61 83.78 596 98 600 214 600 

2 725 50.7 2.43 18.72 11.18 68.23 474 6 71 98 631 

3 271 54.13 7.68 35.26 64.79 54.4 159 0 131 224 164 

4 350 0.78 1.93 44.33 0 34.97 2 11 140 2 141 

5 252 74.06 26.71 58.01 4.96 73.09 252 36 178 2 242 

6 770 67.74 47.64 28.95 78.42 57.42 749 366 64 696 627 

7 219 49.83 13.33 20.17 0.08 38.43 81 32 22 2 43 

8 1210 71.48 15.27 5 3.48 70.77 1105 34 28 2 1079 

9 292 43.16 13.02 26.8 13.61 38.77 150 10 40 23 75 

10 436 2.8 3.31 31.54 6.72 13.42 5 4 93 28 29 

11 310 31.44 2.47 8.39 0 15.52 72 5 5 2 51 

12 207 66.8 29.96 33.48 51.83 59.27 184 69 59 88 148 

13 244 12.09 14.53 59.98 41.94 16.44 16 29 174 113 42 

14 267 14.76 9.55 20.58 22.89 20.46 28 12 35 54 52 

15 307 17.64 56.9 12.99 8 39.09 69 209 62 7 169 

16 164 46.82 4.12 9.74 1.23 16.77 98 7 12 4 27 

17 371 79.89 43.54 59.83 0 65.92 371 177 318 2 348 

18 400 54.83 19.58 17.95 4.26 48.73 239 26 21 6 226 

19 201 83.91 13.39 18.24 3.65 78.45 201 28 23 8 167 

20 172 74.53 18.85 51.92 50.53 62.58 172 38 85 81 163 

21 282 62.72 38.09 63.05 98.31 73.18 243 50 269 282 257 

22 264 50.17 3.72 73.39 40.9 48.97 172 11 218 124 161 

23 569 61.62 23.01 36.18 43.57 57.72 517 142 209 347 406 

24 731 28.29 19.93 10.3 17.5 19.12 86 135 81 9 26 

25 597 12.76 10.89 31.91 92.11 37.08 110 43 22 549 304 

5. Conclusion 
In this work, we devise an object tracking algorithm fusing CNN and color histogram-

based trackers that extracts the XY coordinates of the target object. Then, we estimate the 
depth(Z) position of the target via an unsupervised monocular depth estimation algorithm 
heading to make automatic immersive audio founded cinema. To upsurge the tracking 
accuracy and handle the occlusion problems of the GOTURN algorithm, we consolidate 
CNN based GOTURN algorithm and a color histogram-based mean-shift tracking algorithm. 
The SVM classifier is then used to select a tracker with higher tracking accuracy. The 
performance of our tracker is improved by selecting one of the two trackers based on the 
histogram similarity. The overall tracking accuracy of the proposed algorithm is about 2% 
and 19% improved than the existing cutting-edge GOTURN and mean-shift algorithm. In the 
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current object tracking research, as with our proposed algorithm, occlusion and re-
identification areas do not perform robustly in the sequences of various domains. Thus, many 
researchers are still actively researching to solve these tracking issues.  Also, since the 
bounding box does not completely represent the tracking object, there is a problem that noise 
due to the background is included when calculating the histogram similarity. In future, we 
will research on object segmentation to improve the accuracy of the tracking algorithm. 
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