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Abstract 
 

As one of the most important issues in computer vision and image processing, online object 
tracking plays a key role in numerous areas of research and in many real applications. In this 
study, we present a novel tracking method based on the proposed structured sparse 
representation model, in which the tracked object is assumed to be sparsely represented by a 
set of object and background templates. The contributions of this work are threefold. First, the 
structure information of all the candidate samples is utilized by a joint sparse representation 
model, where the representation coefficients of these candidates are promoted to share the 
same sparse patterns. This representation model can be effectively solved by the simultaneous 
orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on 
the proposed representation model, a discriminative candidate selection scheme, and a simple 
model updating method. Finally, we conduct numerous experiments on several challenging 
video clips to evaluate the proposed tracker in comparison with various state-of-the-art 
tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging 
video clips show that our tracker achieves better performance than the other state-of-the-art 
methods.  
 
 
Keywords: Object tracking, sparse representation, simultaneous orthogonal matching 
pursuit (SOMP)  

 
This research was supported in part by the Natural Science Foundation of  China under grant no. 61502070, and in 
part by the Fundamental Research Funds for Central Universities under grant no. DC201501010401. 
 
http://dx.doi.org/10.3837/tiis.2016.05.021                                                                                                          ISSN : 1976-7277 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016                                        2347 

1. Introduction 

Online object tracking is a fundamental and interesting issue in the fields of video processing 
and computer vision, and has many applications in real-world scenarios, including 
human–computer interface, video surveillance, intelligent traffic, and augmented reality. 
Although several processes have been introduced and numerous effective tracking algorithms 
have been developed [1][2], designing a robust and efficient tracker remains extremely 
difficult because of many challenging factors. These factors mainly include heavy occlusion, 
illumination variation, pose change, background clutter, and motion blur.  

An online object-tracking algorithm generally consists of two basic components: motion 
model and appearance model. The motion model focuses on depicting the states of the tracked 
object over time, and thus, generate a set of possible candidate states in each frame. In many 
classical or recent tracking algorithms, the Kalman filtering [3] and particle filtering [4][5] 
techniques are the commonly used motion models. By contrast, the appearance model aims to 
represent the appearance of the tracked object (and its surrounding background) to evaluate the 
likelihood of each candidate in the current frame. In view of the appearance model, existing 
tracking methods can be mainly categorized into algorithms based on template matching 
[3][6][7][8], online classifiers [9][10][11][12][13][14][15], and representation models 
[16][17][18][19][20]. Tracking algorithms based on template matching frequently use a single 
template [3][6][8] or multiple templates [7] to depict the tracked object; they cast the tracking 
problem as finding the best candidate image patch with the highest similarity or the smallest 
distance. Tracking algorithms based on online classifiers are also called discriminative 
tracking methods; they aim to distinguish tracked objects from their surrounding backgrounds 
and update the classification models online to capture appearance changes from both 
foregrounds and backgrounds. Therefore, several existing classification techniques can 
promote the progress of tracking algorithms, such as support vector machine [10][15], 
boosting [9]–[11], and multiple instance learning (MIL) [12].  

Trackers based on representation models generally include two main categories: 
subspace-based trackers and sparse representation-based trackers. In 2008, Ross et al. [16] 
proposed an incremental visual tracking (IVT) method that adopted an incremental principle 
component analysis technique to model the appearance of a tracked object online. Li et al. [17] 
introduced the concept of manifold learning into the IVT method and adopted log-Euclidean 
distance to improve the robustness of the tracker. Although these methods achieve good 
tracking performance when the tracked object experiences illumination variation and pose 
change, they are less effective in dealing with other challenging factors such partial occlusion 
and background clutter. Motivated by the success of sparse representation, Mei et al. [18] 
developed a novel L1 tracker that adopted a set of objects and trivial templates to sparsely 
approximate a tracked object, in which the L1 regularization term promoted a sparse solution. 
Although the L1 tracker [18] explicitly introduces theory of sparse representation into the 
tracking field and model outliers (e.g., partial occlusion) by using trivial templates, its 
performance is unsatisfactory because of two reasons. First, the L1 tracker has to adopt 
low-resolution image patches to balance speed and accuracy because this tracker requires 
solving numerous complicated L1 minimization problems in each frame. Second, the L1 
tracker uses a simple model updating method, which causes the tracker to drift easily because 
of inappropriate updates. Many researchers have attempted to improve the L1 tracker by 
combining subspace and sparse representation models [19], modeling the relationships among 
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different candidates [20], and adopting different optimization techniques [21]. In the present 
study, we propose a novel online object-tracking algorithm based on sparse representation. 
The contributions of this work are threefold. 

 (1)  We propose a structured sparse representation model to represent all candidate samples 
through a set of object and background templates. This representation model can be effectively 
solved using the simultaneous orthogonal matching pursuit (SOMP) method.  

 (2) On the basis of the particle filter framework, we develop a tracking framework using the 
proposed structured sparse representation model with a discriminative candidate selection 
scheme and a simple updating manner.  

 (3) We conduct several experiments on nine challenging image sequences to investigate the 
effects of the key parameters of our tracker and to compare the proposed tracking algorithm 
with eight state-of-the-art trackers. The experimental results demonstrate that the proposed 
tracker achieves good performance compared with the other methods.  

The rest of this paper is organized as follows. In Section 2, we briefly introduce the 
background of the study and related works. In Section 3, we present the proposed tracking 
framework based on the structured sparse representation model. In Section 4, we report the 
experimental results of the proposed tracker and compare the tracker with other 
state-of-the-art tracking methods. Finally, we draw our conclusions in Section 5.  

2. Background and Related Works 
2.1 Particle filter 
 
The particle filter [4][5][16] is a common framework for solving the tracking problem because 
this algorithm can be regarded as a typical dynamic state inference problem. To ensure a 
self-contained approach in this study, we briefly introduce several fundamental concepts of the 
particle filter technique. The particle filter is a Bayesian sequential importance sampling 
algorithm that can estimate the posterior distribution of state variables for a given dynamic 
system using a finite set of weighted samples. Notably, the particle filter provides a unified 
framework for estimating and propagating the posterior probability density function of state 
variables regardless of the underlying distribution.  

For the tracking problem, we adopt the symbol tz  to denote the state variable that describes 
the affine motion parameters of the target, and ty  to denote its corresponding observation 
vector, i.e., the extracted image feature related to state tz ( t  is the frame index). The prediction 
and updating steps recursively estimate the posterior probability of the tracked state based on 
the following rules:  

                     ( ) ( ) ( )1: 1 1 1 1: 1 1| | |t t t t t t tp p p d− − − − −= ∫z y z z z y z ,                                     (1) 

( ) ( ) ( ) ( )1: 1 1: 1 1: 1| | | |t t t t t t t tp p p p− − −=z y y z z y y y ,                              (2) 
where [ ]1: 1 2, ,...,t t=z z z z  denotes all the available states up to frame t , and 

[ ]1: 1 2, ,...,t t=y y y y  indicates their corresponding observation samples. In the tracking 
problem, ( )1|t tp −z z  depicts the state transition between two consecutive frames, which is 
frequently called the motion model. ( )|t tp y z  denotes the appearance model that aims to 
evaluate the observation likelihood of each observation sample being similar to the tracked 
object.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016                                        2349 

On the basis of the particle filter framework, the posterior distribution ( )1:|t tp z y  can be 

approximated using N  weighted particles { }
1

,
Ni i

t t i
w

=
z  drawn from an importance distribution 

( )1: 1 1:| ,t t tq −z yz , where i
tw  denotes the weight of particle i

tz . The weights of the particles are 
updated frame-by-frame based on Equation (3):  

( ) ( ) ( )1 1 1: 1 1:| | | ,i i i i i i
t t t t t t t t tw w p p q− − −

 =  y z z z z z y .                            (3) 

Similar to that in reference [16], we use ( ) ( )1: 1 1: 1| , |i i
t t t t tq p− −= zzzz y , which is assumed to 

follow a Gaussian distribution. In particular, we adopt the six parameters, i.e., 
{ }, , , , ,t t t t t t tx y sθ α φ=z , of affine transform to represent the state of the tracked object, where 

parameters , , , , ,t t t t t tx y sθ α φ  denote vertical translation, horizontal translation, rotation angle, 
scale, aspect ratio, and skew, respectively. Moreover, state transition is formulated via a 
simple random walking process, i.e., ( ) ( )1 1| ; ,t t t tp − −= z ψz z z , where ψ  is a diagonal 

covariance matrix, and the covariances of which are denoted as 2 2 2 2 2 2, , , , ,x y sθ α φs s s s s s . 

Finally, the optimal state can be obtained via *

1

N
i

t t
i=

=∑z z  (the optimal state represents the best 

accurate motion parameter in the t -th frame).  

2.2 Sparse representation-based object tracking  
At present, sparse representation has been extensively investigated and applied to solve many 
real-life problems in numerous research fields, such as pattern recognition, image processing, 
and computer vision [22]. Sparse representation-based object-tracking algorithms have also 
been shown to achieve significant performance compared with traditional trackers. In 2009, 
motivated by the success of the sparse representation-based face recognition system [23], Mei 
et al. [18] proposed a novel L1 tracker (denoted as the original L1 tracker) by assuming that a 
tracked object could be sparsely represented by a set of target templates and trivial templates; 
the target templates would describe the appearance change of the tracked object, whereas the 
trivial templates would deal with possible occlusion conditions. This sparse representation 
process is achieved by solving an L1 minimization problem. However, the original L1 tracker 
has two main drawbacks. First, its computational complexity is extremely high because of the 
complicated L1 minimization. Second, this tracker does not utilize rich and redundant image 
properties because low-solution image patches (12 15× pixels [18]) are adopted to balance 
speed and accuracy.  

To improve the performance of the original L1 tracker, numerous researchers have 
conducted studies based on different perspectives. Mei et al. [24] presented an efficient L1 
tracker with a novel minimum error bound scheme. In this scheme, an error bound can be 
estimated quickly using an ordinary least squares regression and then used to select effective 
candidates. Since then, several methods have been presented to improve the original L1 
tracker in terms of both speed and accuracy, such as introducing dimension reduction 
techniques [25], adopting the accelerated proximal gradient algorithm [21], modeling 
similarities among different candidates [20], and using orthogonal basis vectors to replace raw 
pixel templates [19]. In the current work, our tracking algorithm is designed based on sparse 
representation, which is motivated by the success of the aforementioned trackers.  
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3. Object Tracking based on a Structured Sparse Representation Model 

3.1 Feature extraction  
Notably, several unexpected abnormal noises (such as local illumination variation and partial 
occlusions) may occur along with the appearance of a tracked object during the tracking 
process. These noises will inevitably affect the performance of an object-tracking algorithm. 
In this work, we address this issue by adopting fragment-based feature representation with 
local normalization. The feature extraction process is illustrated in Fig. 1. First, an observation 
image patch Y  is divided into M M×  fragments.  For each fragment, the grayscale 
information is extracted and vectorized into a column vector. Second, the feature vectors are 
normalized to enable each of them to have an L2-norm unit (i.e., 

2i i i←y y y , where index 
i  denotes the i -th fragment). Finally, the normalized feature vectors are concatenated into a 
holistic feature vector y .  

1 2, ,...,
TT T T

M M× =  y y y y                                                       (4) 
 

 
 

Fig. 1. Illustration of our feature extraction process. 
 

3.2 Structured sparse representation model 

In the t -th frame, we crop out the corresponding image patch for each particle i
tz  and extract 

its gray-level locally normalized feature i
ty  (the particles are randomly generated according to 

the motion model introduced in Section 2.1). Then, we construct the candidate set as 
1 2, ,..., N

t t t t =  Y y y y . In this section, we omit frame index t  for clarity, i.e., [ ]1 2, ,..., N=Y y y y , 

where column atom iy  denotes the feature of the i -th candidate. Motivated by [18], we 
assume that the tracked target can be sparsely represented by a series of 
templates ,+ − =  A A A , where 1 2, ,...,

pN
+ + + + =  A a a a  and 1 2, ,...,

nN
− − − − =  A a a a  represent the 

positive and negative templates, respectively ( pN  is the number of positive samples, and nN  
is the number of negative samples). The construction and updating of these templates are 
introduced in Section 3.4. Therefore, from the perspective of sparse representation, the 
approximations of all N  candidates are illustrated in Equation (5). In this work, we adopt L0 
norm (

0
. , the number of nonzero numbers) to indicate the sparsity level.  
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which can be rewritten in matrix form as follows:  
 

00
, NT≈ ≤Y AX X .                                                    (6) 

 
However, this representation model regards each candidate individually and fails to consider 
the relationships among different candidates. To model the relationships among different 
candidates, we adopt a structured sparse representation model in this work by manipulating the 
coefficients of different candidates to share similar sparse patterns. The representation process 
can be modified into a problem, i.e., Equation (7), and an illustration of which is provided  in 
Fig. 2. 

0,0
,

row
T≈ ≤Y AX X ;                                                  (7) 

 
where notion 

,0row
X  denotes the number of nonzero rows of X . The solution of X  can be 

obtained by solving the following optimization problem: 
 



2

0,0

arg min

. .
F

row
s t T

= −

≤
XX Y AX

X
.                                               (8) 

 
Notably, this optimization problem, i.e., Equation (8), can be solved via SOMP [26], which is 
a greedy algorithm that iteratively recovers the common support set. At each step, the column 
of the templates that can approximate all the residual vectors is selected and integrated into the 
support set. The iteration process terminates when the desired sparsity level is achieved. 
Detailed information on the SOMP method is provided in Algorithm 1. After obtaining the 
optimal coefficients, the likelihood value of each candidate i

tz  can be obtained using the 
following equation. The intuitive concept of Equation (9) is as follows: a good candidate 
should have a small reconstruction error based on positive samples and a large reconstruction 
error based on negative samples. Therefore, the proposed likelihood measure can utilize both 
foreground and background information for robust tracking.  
 

( )  

2 2

2 2
| expi i i i

i it t t t t tp
+ −+ −  

= − − − −  
  

y z y A x y A x                             (9) 
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Fig. 2. Illustration of the proposed representation model. 
 
 

Algorithm 1. Flowchart of the SOMP method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.3 Discriminative candidate selection  
To improve both the effectiveness and efficiency of our tracker, we present a discriminative 
candidate selection scheme to prune the original candidate sample matrix D N×∈Y   into a 
small pruned sample matrix ' D K×∈Y  , where D  is the dimension of each sample and K  is 
the number of selected candidates ( K N< ). The pseudo-code of the proposed scheme is 
provided in Algorithm 2. The basic concept of this algorithm is as follows: a good candidate 

Input: Candidate sample matrix Y , template set A , and sparsity level 0T  
Step 1: Initialize residual matrix =R Y , index set φ=Ω . 
Step 2: For 01i to T=  do 

(1) Find the index of the atom that best approximates all residuals:  
             ( )2

arg max , 1,2,...,T
j p nFj

index j N N= = +R a . 

                 (2) Update index set { }index←Ω Ω . 

         (3) Compute the coefficient matrix  ( ) 1T T−
= Ω Ω ΩX A A A Y , where ΩA  

   consists of the columns indexed in Ω . 
 (4) Update residual matrix = − ΩR Y A X . 
 End For 

Output: Index set Ω , the sparse representation coefficient matrix X  whose nonzero 
               rows indexed by Ω  are the 0T  rows of matrix ( ) 1T T−

Ω Ω ΩA A A Y . 
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sample has a smaller distance to the positive template and a large distance to the negative 
template. In this work, we adopt the nearest neighbor distance to measure these two distances, 
i.e., the distance between 

i
y  and the positive template set +A  is defined as  

 
2

2
min , 1,2,...,

ii j pj
d j N+ += − =y a ,                                 (10) 

 
whereas  the distance between 

i
y  and the negative template set −A  is calculated  by  

 
2

2
min , 1,2,...,

ii j nj
d j N− −= − =y a .                                 (11) 

 
 

Algorithm 2. Flowchart of the proposed candidate selection scheme. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 Model construction and update  
To construct the template in the first frame, we manually select the first positive template and 
obtain the rest 1pN −  of the positive templates by perturbating one pixel in different 
directions. Then, the nN  negative samples are randomly sampled from the set 

* *, | ;
8 4 8 4
w w h hr c r r c c Ω = < − < < − < 

 
, where ( )* *,r c  denotes the optimal locations (the 

location of the target in the first frame or the tracked result in the rest of the frames); w  and h  
indicate the width and height of the target, respectively.  
    To ensure that the tracker will adapt to the appearance changes of both the object and the 
background, introducing an online model updating mechanism into a given tracker is 
necessary. Thus, template set A  should be updated during the tracking process. To update the 
positive sample set, we first find the nearest neighbor of the optimal observation sample y  in 
the positive template set +A  and obtain the nearest neighbor 

j
+a (  

2

2
arg min , 1,2,...,j pj

j j N+= − =y a ). Then, we replace 
j
+a  with the observation sample y . 

To update the negative sample set, we discard all the old negative samples in −A  and resample 

Input: Candidate sample matrix Y , template set A , and selected number K  
Step 1: Calculate a distance vector d  for candidate selection. 
 For 1i to N=  do 

  
2

2
min , 1,2,...,

ii j pj
d j N+ += − =y a  and 

2

2
min , 1,2,...,

ii j nj
d j N− −= − =y a  

  i i id d d+ −= −  
 End For 
Step 2: Sort distances in ascending order. 

 ( )[ _ , _ ] , ' 'sorted index sorted distance sort ascend= d  

Output: Pruned sample matrix ( )( )' 1: _ 1:sorted index K=Y Y . 
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nN  samples using a procedure similar to that in the first frame to build a new negative 
template set.  
 
 

3.5 Tracking framework  
On the basis of the preceding presentations and discussions, we summarize the framework of 
our tracker in Algorithm 3. 
 

 
Algorithm 3. Framework of the proposed tracking algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4. Experimental Results and Discussions 
In this work, our tracker is implemented in MATLAB platform and ran at 13 frames per 
second on a PC with Intel i7-3770 CPU (3.4 GHz) with 32 GB memory. The variance matrix 
of the affine parameters is set to ( )4,4,0.01,0.005,0.001,0.001diag=ψ  as the default values. 
For each video clip, the bounding box of the tracked object is manually labeled in the first 
frame. We resize each observation patch to 32 32×  pixels and then extract its locally 
normalized feature vector using 4 4×  fragments. As a trade-off between effectiveness and 
speed, we adopt 600 particles and select 100 of these particles using the proposed particle 

Step 1: Initialize the parameters of our tracker manually. 
Step 2: Collect positive and negative samples to build template set 1A  in the first frame. 
Step 3:    Perform tracking  

For 2t to T= ( T is the total frame number) do 
(1) Sample N  candidate states 1 2, ,..., N

t t t t =  Z z z z  and extract their 

corresponding locally normalized features 1 2, ,..., N
t t t t =  Y y y y  (refer to 

Section 3.1 for additional details).  
(2) Prune candidate samples tY  into a small pruned sample matrix '

tY  
(Section 3.3).  

(3) Solve the structured sparse representation model 


2'arg min ,t t F
= −XX Y A X  0,0row

T≤X by using the SOMP method 
(Section 3.2) 

(4)  Compute the observation likelihood 

( ) ( )2 2

2 2
| expi i i i

t t t t i t t ip + − = − − − −  
y z y A x y A x . 

(5) Infer the optimal state of the tracked object using the particle filter 
framework. 

(6) Collect positive and negative samples to update the template set (Section 
3.4). 

End For 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016                                        2355 

selection mechanism. The numbers of positive and negative samples are set to 10 and 50, 
respectively. The sparsity level 0T  of the representation model is set to 7. The effects of 
several critical parameters are discussed in a later section.  

For experimental comparisons, we collect nine challenging image sequences, with 
challenging factors that include partial occlusion, pose change, illumination variation, scale 
change, and background clutter. By adopting these challenging video clips, our tracker is 
compared with eight state-of-the-art tracking algorithms, including the fragment-based 
tracking (FragT) [6], IVT [16], MIL [12], visual tracking decomposition (VTD) [7], 
tracking-learning-detection (TLD) [14], accelerated proximal gradient L1 (APGL1) [21], 
multitask tracking (MTT) [20], and local sparse appearance tracking (LSAT) [27] algorithms.  

 
4.1 Qualitative comparisons 
Fig. 3 illustrates that the proposed tracking algorithm achieves good performance (in terms of 
position, rotation, and scale) when the tracked target experiences partial occlusions during the 
tracking process, which can be mainly attributed to three reasons. First, the structured sparse 
representation model is used in our appearance model to utilize the relationships between 
candidates and templates as well as the relationships among different candidates (i.e., different 
candidates share similar sparse patterns). Second, the adopted locally normalized feature 
causes our tracker to be less sensitive to partial occlusion. Third, the negative samples allow 
our tracker to be less sensitive to noises from the background. Notably, the IVT algorithm 
performs poorly in handling occlusion because the Gaussian noise assumption is ineffective in 
modeling abnormal outliers. The FragT method handles partial occlusion via fragment-based 
object representation with an integral histogram. Although satisfying results are achieved in a 
few simple examples (e.g., Occlusion1), this method unsatisfactorily works in more 
challenging cases (e.g., Occlusion2 and Caviar2) because it cannot address appearance 
changes caused by scale and pose. The MIL method aims to solve ambiguity, but achieves 
unsatisfactory performance when the targets are occluded by similar objects because the 
binary features used are ineffective in distinguishing objects with similar appearances (e.g., 
Caviar1 and Caviar2). Although the APGL1 tracker considers partial occlusion explicitly by 
using a set of trivial templates, this method also exhibits poor performance in some cases (e.g., 
Caviar1 and Caviar2) because it does not model the relationships among candidates and does 
not utilize background information.  
 
    In addition, Figs. 4 and 5 present the representative results for the other challenging image 
sequences. The results show that our tracker also performs efficiently in handling other 
challenging factors, including pose change (DavidIndoor), illumination variation (Singer and 
Car1), and background clutter (Car2 and Deer). 
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Fig. 3. Representative results for the FaceOcc1, FaceOcc2, Caviar1, and Caviar2 sequences, which 

highlight that the tracked objects exhibit severe occlusion. 
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Fig. 4. Representative results for the DavidIndoor, Singer, and Car1 sequences, which highlight 

out-of-plane rotation, scale change, and illumination variation. 
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Fig. 5. Representative results for the Car2 and Deer sequences, which highlight background clutter  

and motion blur. 
 

4.2 Quantitative comparison 
    In this study, we adopt two standard criteria to evaluate the proposed tracking algorithm and 
other similar trackers. The first rule is center error (CE), which is defined as  

( ) ( ) ( ) ( ) ( )2 2
T G T Gt tCE t ty tx x y= − + −       ,                               (12) 

where ( ) ( ){ },G Gx t y t  denotes the center location (i.e., horizontal and vertical coordinates) of 

the ground truth, ( ) ( ){ },T Tx t y t  denotes the center location obtained by a given tracker, and t  
is the frame index. Evidently, a tracker that exhibits good performance intends to achieve 

small CE values in each sequence. Table 1 provides the average CE (i.e., ( )
1

1 T

t
ACE CE t

T =

= ∑ , 

T  is the number of total frames) values of these trackers. The red text denotes the smallest CE 
values, whereas the blue text denotes the second best values. Although the center location 
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error is highly intuitive, the scale and rotation changes of the tracked objects cannot be 
considered. Therefore, we also adopt the second rule, i.e., overlap rate (OR), which is defined 
as  

( ) ( ) ( ){ } ( ) ( ){ }T G T GOR t area t t area t t= B B B B G ,                             (13) 
 

where ( )G tB  and ( )T tB  are the ground truth bounding box and the tracked bounding box in 

the t -th frame, respectively. Table 2 summarizes the average OR, i.e., ( )
1

1 T

t
AOR OR t

T =

= ∑ , 

values of these trackers, where the red text denotes the best performance and the blue  text 
denotes the second best result. As observed from Tables 1 and 2, our tracker performs better 
than the other state-of-the-art tracking algorithms in some challenging image sequences. 
 

Table 1. Average CE of the tracking algorithms. The best three results are shown in red (first), blue 
(second) and green (third) text. 

    Method 
Sequence 

FragT 
[6] 

IVT 
[16] 

MIL 
[12] 

VTD 
[7] 

TLD 
[14] 

APGL1 
[21] 

LSAT 
[20] 

MTT 
[27] Ours 

FaceOcc1 5.6 9.2 32.3 11.1 17.6 6.8 5.3 14.1 4.5 
FaceOcc2 15.5 10.2 14.1 10.4 18.6 6.3 58.6 9.2 3.4 
Caviar1 5.7 45.2 48.5 3.9 5.6 50.1 1.8 20.9 1.4 
Caviar2 5.6 8.6 70.3 4.7 8.5 63.1 45.6 65.4 3.8 

DavidIndoor 76.7 3.6 16.1 13.6 9.7 14.3 4.9 124.0 4.3 
Singer 22.0 8.5 15.2 4.1 32.7 3.1 14.5 41.2 4.0 
Car1 179.8 2.9 60.1 12.3 18.8 16.4 3.3 37.2 3.1 
Car2 63.9 2.1 43.5 27.1 25.1 1.7 4.1 1.8 1.7 
Deer 92.1 127.5 66.5 11.9 25.7 38.4 69.8 9.2 10.1 

Average 51.9 24.2 40.7 11.0 18.0 22.2 23.1 35.9 4.0 
 

Table 2. Average OR of the tracking algorithms. The best three results are shown in red (first), blue 
(second) and green (third) text. 

    Method 
Sequence 

FragT 
[6] 

IVT 
[16] 

MIL 
[12] 

VTD 
[7] 

TLD 
[14] 

APGL1 
[21] 

LAST 
[20] 

MTT 
[27] Ours 

FaceOcc1 0.90 0.85 0.59 0.77 0.65 0.87 0.90 0.79 0.91 
FaceOcc2 0.60 0.59 0.61 0.59 0.49 0.70 0.33 0.72 0.84 
Caviar1 0.68 0.28 0.25 0.83 0.70 0.28 0.85 0.45 0.88 
Caviar2 0.56 0.45 0.26 0.67 0.66 0.32 0.28 0.33 0.76 

DavidIndoor 0.19 0.71 0.45 0.53 0.60 0.57 0.62 0.27 0.78 
Singer 0.34 0.66 0.34 0.79 0.41 0.83 0.52 0.32 0.83 
Car1 0.22 0.92 0.34 0.73 0.64 0.70 0.91 0.53 0.91 
Car2 0.09 0.81 0.17 0.43 0.38 0.83 0.49 0.58 0.80 
Deer 0.08 0.22 0.21 0.58 0.41 0.45 0.35 0.60 0.63 

Average 0.41 0.61 0.36 0.66 0.55 0.62 0.58 0.51 0.80 
 

4.3 Effects of critical parameters 
In this subsection, we investigate the effects of several critical parameters on our tracker and 

present the results in Tables 3, 4, and 5, in which ACE denotes average CE, AOR denotes 
average OR, and FPS indicates frame per second, which measures the speed of a given tracker. 
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First, we report the tracking results with different sparsity levels in Table 3. If the sparsity 
level is too small, then a sufficient number of templates to represent candidates cannot be 
selected although tracking speed is extremely high. However, if the sparsity level is too large, 
then several noise templates may be selected to represent all the candidates. Thus, the sparsity 
level should be set to an appropriate value ( 0 7T =  is used in this work). Second, the number of 
fragments should also be an appropriate value (the corresponding experimental results are 
provided in Table 4). If the number is too small, then the tracker cannot address abnormal 
noises, which may lead to tracking drift (such as 1M = ). By contrast, a large number of 
fragments causes object representation to be highly trivial, which results in the poor accuracy 
and fast speed of the tracker (e.g., 6M = ). Finally, the effects of different selection numbers 
on selecting candidates are presented in Table 5. The result shows that the proposed 
discriminative candidate selection method is highly effective in terms of both accuracy and 
speed.  

 
Table 3. Effect of the sparisity level for visual tracking  

          0T  
Measure 

1 3 5 7 9 11 

ACE 36.0 17.4 8.4 4.0 5.9 16.6 
AOR 0.62 0.70 0.75 0.82 0.80 0.73 
FPS 16 15 14 13 12 12 

 
Table 4. Effect of the number of fragments   

             M  
Measure 1 2 4 6 8 

ACE 25.4 11.7 4.0 24.6 10.6 
AOR 0.62 0.75 0.82 0.71 0.79 
FPS 16 14 13 11 8 

 
Table 5. Effect of the selected number for visual tracking  

K  
Measure 50 100 200 400 600 

ACE 5.5 4.0 15.7 34.8 67.0 
AOR 0.79 0.82 0.77 0.61 0.46 
FPS 15 13 11 8 7 

5. Conclusion 
In this study, we present a novel object-tracking method based on the proposed structured 
sparse representation model. First, we simultaneously represent all the candidate samples 
using a series of object and background templates, which can be solved via the SOMP method. 
Second, we develop a tracking algorithm based on the particle filter framework by comparing 
our structured sparse representation model with a discriminative candidate selection scheme 
and a simple updating method. Finally, numerous experiments are conducted to evaluate the 
proposed tracker and to compare this tracker with other state-of-the-art algorithms. Both 
qualitative and quantitative experimental results demonstrate that the proposed tracker 
performs better than the other algorithms.  
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