• 제목/요약/키워드: Robust adaptive control system

검색결과 388건 처리시간 0.034초

Robust Adaptive Control of A HexaSlide Type Parallel Manipulator

  • Kim, Jong-Phil;Kim, Sung-Gaun;Ryu, Jeha
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.262-267
    • /
    • 2001
  • Jeha Ryu Department of Mechatronics, Kwangju Institute of Science and Technology This paper presents an application of a robust adaptive control strategy to HexaSlide type six degrees-of-freedom parallel manipulators. The HexaSlide type parallel manipulators are characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. The proposed control law is developed based on a simplified second order system dynamic equation in joint space with uncertain mass, damper, spring, and Coulomb friction terms. These uncertain parameters are updated by an adaptation law that is derived by Lyapunov stability theorem. A robust adaptive control law by using the boundary layer is designed for the purpose of compensating for the neglected dynamic effects of the mobile platform and the six moving links that are modeled as a disturbance term. Experimental results show good and fast tracking performance.

  • PDF

Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors

  • Jung, Jin-Woo;Choi, Han Ho;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.904-911
    • /
    • 2012
  • This paper presents a fuzzy adaptive speed controller that guarantees a fast dynamic behavior and a precise trajectory tracking capability for surfaced-mounted permanent magnet synchronous motors (SPMSMs). The proposed fuzzy adaptive control strategy is simple and easy to implement. In addition, the proposed speed controller is very robust to system parameter and load torque variations because it does not require any accurate parameter values. The global stability of the proposed control system is analytically verified. To evaluate the proposed fuzzy adaptive speed controller, both simulation and experimental results are shown under motor parameter and load torque variations on a prototype SPMSM drive system.

과도성능 개선을 위한 강인한 직접 적응 제어기의 설계 (The Design of Robust Direct Adaptive Controllers for Improved Transient Performance)

  • 이효섭;양해원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.510-513
    • /
    • 2002
  • In this paper, the robust adaptive controller design scheme is studied for nonlinear systems in the presence of bounded disturbances A new robust adaptive controller is designed using high-order neural networks, which avoids the singularity problem in adaptive nonlinear control. The stability of the resulting adaptive system with the proposed adaptive controller si guaranteed by suitably choosing the design parameters and initial conditions. I addition, the proposed adaptive controller provides improved transient performance and fast on-line adaptation. The ability and effectiveness of the proposed adaptive control scheme is shown trough simulations of a simple nonlinear system.

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Kumon, Makoto
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.19-27
    • /
    • 2003
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition called output feedback exponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and high robustness with regard to bounded disturbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The effectiveness of the proposed method is shown by numerical simulations.

Decentralized Nonlinear Voltage Control of Multi-machine Power Systems with Nonlinear Interconnections

  • Lee, Jae-Won;Yoon, Tae-Woong;Im, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.448-453
    • /
    • 2004
  • In this paper, an adaptive robust decentralized excitation control scheme is proposed to enhance the transient stability of a multi-machine power system. We employ a state model where the terminal voltage of each generator is regarded as part of the state. Using this state model, the proposed controller is obtained in two steps: firstly, a robust controller is designed for the nominal system with no interconnection terms; then an adaptive compensator is proposed to deal with those interconnection terms, whose upper bounds are estimated. The resulting adaptive scheme guarantees the practical stability of the closed-loop, and also the uniform ultimate boundedness in the presence of disturbances.

  • PDF

신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근 (Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach)

  • 유성진;최윤호;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권12호
    • /
    • pp.518-525
    • /
    • 2006
  • This paper presents the adaptive robust control method for the flight control systems with model uncertainties. The proposed control system can be composed simply by a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the 'explosion of complexity' problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems, and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

유압 굴삭기의 궤적 추종을 위한 강인 제어 (Robust Control of Trajectory Tracking for Hydraulic Excavator)

  • 최종환;김승수;양순용;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계 (Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems)

  • 박장현;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구 (Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM)

  • 고종선;윤성구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

T-S Model Based Robust Indirect Adaptive Fuzzy Control

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.211-214
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

  • PDF