• Title/Summary/Keyword: Robot data

Search Result 1,513, Processing Time 0.023 seconds

Global Map Building and Navigation of Mobile Robot Based on Ultrasonic Sensor Data Fusion

  • Kang, Shin-Chul;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 2007
  • In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on this paper. Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.

Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots (협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석)

  • Kim, Jae-Eun;Jang, Gil-Sang;Lim, KuK-Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Optimization of Posture for Humanoid Robot Using Artificial Intelligence (인공지능을 이용한 휴머노이드 로봇의 자세 최적화)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

Multisensor-Based Navigation of a Mobile Robot Using a Fuzzy Inference in Dynamic Environments (동적환경에서 퍼지추론을 이용한 이동로봇의 다중센서기반의 자율주행)

  • 진태석;이장명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.79-90
    • /
    • 2003
  • In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

A study on the efficient calculation method of the motion data in the industrial robot (산업용 로보트의 효율적인 작동 데이터 산출방법에 관한 연구)

  • 이순요;권규식;노근래
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 1990
  • The robot motion control in the industrial robot is generally executed by the teach pendant. But, it requires much teaching time and workload to the operators. This study suggests the use of the robot motion control method by the computed keyboard in the industrial robot instead of the teach pendant. TES/CCS(Teaching Expert System/Cartesian Coordinate System) and TES/WCS(Teaching Expert System/World Coordinate System) that have been proposed to improve the robot motion control are applied for this concept. This study is intended to improve the robot motion control in TES/CCS. Parameter limitation problems in getting the motion data on position and posture of the robot in macro motion control are solved by proposed geometric algorithm. This result demonstrates reduction of the average teaching task time to the teaching position.

  • PDF

Emotional Head Robot System Using 3D Character (3D 캐릭터를 이용한 감정 기반 헤드 로봇 시스템)

  • Ahn, Ho-Seok;Choi, Jung-Hwan;Baek, Young-Min;Shamyl, Shamyl;Na, Jin-Hee;Kang, Woo-Sung;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.328-330
    • /
    • 2007
  • Emotion is getting one of the important elements of the intelligent service robots. Emotional communication can make more comfortable relation between humans and robots. We developed emotional head robot system using 3D character. We designed emotional engine for making emotion of the robot. The results of face recognition and hand recognition is used for the input data of emotional engine. 3D character expresses nine emotions and speaks about own emotional status. The head robot has memory of a degree of attraction. It can be chaIU!ed by input data. We tested the head robot and conform its functions.

  • PDF

Touch-based Remote Control of Mobile Robot based on Embedded Device (임베디드 디바이스에 기반한 이동로봇의 터치기반 원격제어)

  • No, Joon-Ho;Hwang, Yu-Gun;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.62-67
    • /
    • 2011
  • Embedded device that can support mobile computing environment has been popular recently. In this study, we propose a new robot application based on embedded device to control a mobile robot using a touch-based remote interface with information display of robot trajectory and sensors. We developed the robot application using Microsoft's.Net Compact Framework and Zigbee data communication with Windows CE kernel based embedded device. In experiment, we evaluated the feasibility and the effectiveness of the proposed system by showing a remote robot control using touch interface and a information display of the robot.

  • PDF

Implementation of Algorithm to Write Articles by Stock Robot

  • Sim, Da Hun;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.40-47
    • /
    • 2016
  • Journalism robot by using a computer algorithm, while maintaining the precision and reliability of the existing media refers to an article which is automatically created. In this paper, we introduce 'stock robot' of robot journalism which writes securities articles and describe artificial intelligence algorithms in stages. Key steps of stock robot implemented artificial intelligence algorithm through four steps of data collection and storage, key event extraction, article content production, and article production. This research has developed a stock robot that collects and analyzes data on social issues and stock indexes for the last 2 years. In the future, as the algorithm is further developed, it becomes possible to write securities articles quickly and accurately through social issues. It will also provide customized information tailored to the user's preferences.