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<Abstract>

Presently, the exploration of an unknown environment is an important task for the 

development of mobile robots and mobile robots are navigated by means of a number 

of methods, using navigating systems such as the sonar-sensing system or the 

visual-sensing system. To fully utilize the strengths of both the sonar and visual 

sensing systems, 

In mobile robotics, multi-sensor data fusion(MSDF) became useful method for 

navigation and collision avoiding. Moreover, their applicability for map building and 

navigation has exploited in recent years. In this paper, as the preliminary step for 

developing a multi-purpose autonomous carrier mobile robot to transport trolleys or 

heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this 

paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR 

sensor for mobile robot to navigate, and presents an experimental mobile robot 

designed to operate autonomously within indoor environments. Simulation results with 

a mobile robot will demonstrate the effectiveness of the discussed methods. 
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1. Introduction

A mobile robot has many application fields 

because of its high workability. Especially, it 

is definitely necessary for the tasks that are 

difficult and dangerous for men to perform. 

There are many people who are interested in 

the mobile robot. However, most of them are 

aiming at successful navigation, that is, 

focusing on recognizing a location and 

reaching at a fixed destination safely.

Probabilistic methods have been shown to 

be well suited for dealing with the 

uncertainties involved in this problem. The 

method is based on a variant of the EM 

(expectation–maximization) algorithm, which 

is an efficient hill-climbing method for 

maximum likelihood estimation in high- 

dimensional spaces. In the context of 

mapping, EM iterates two alternating steps: a 

localization step, in which the robot is 

localized using a previously computed map, 

and a mapping step, which computes the 

most likely map based on the previous pose 

estimates [1][2]. 

This paper also implements sonar sensor- 

based on-line map building that is based on 

the application of the Hough Transform [3]. 

This approach builds a map of straight line 

geometric primitives which is then combined 

with the sensor fusion approach using local 

map data, resulting in an improved new 

method, allowing the system to make a more 

efficient use of collected sensory information 

for simultaneous and cooperative construction 

of a world model and learning to navigate to 

the goal. 

2. Implementations

2.1 Sonar Scanning

Sonar has unique properties which make it 

very useful for mobile robot navigation. The 

transducers are cheap, reliable, and physically 

robust, and they can ‘see’ a wide variety of 

objects since most solids are good sonar 

reflectors. Most significantly, accurate, robust 

range estimates are easy to extract from 

sonar data. These can be used for obstacle 

avoidance and are often difficult to obtain by 

other means.

These features combine to make the 

interpretation of sonar readings very difficult, 

while the low speed of sound forces 

sampling rates to be kept quite low (10-20 

Hz for ranges up to 10 meters) and puts a 

premium on effective data interpretation [4].

A high-resolution sonar scan of an empty 

room is shown in fig. 2 (from [5]). This was 

taken by firing a rotating Polaroid sensor at 5 

degree intervals and plotting apparent range 

against sensor-axis angle, as shown in Fig. 3

2.2 Object Classification

For many years, a lot of work has been 

invested in generating maps for mobile robots 

by ultrasonic sensors with or without 
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classification of environment objects as shown 

in Figure 2. 

Fig. 1 Typical range of Sonar scan

Fig. 2 Reflection behavior of a) planes, b) 

corners, and c) edges

The main goal is still to find collision free 

paths for a given destination in an unknown 

environment. Generally, successful path 

planning strategies require sufficiently accurate 

information about the mobile robot’s position. 

This is usually not satisfied by pure odometric 

measurement because of the accumulation of 

errors in the progress of robot’s motion [9]. 

Therefore, pose tracking requires frequently 

recalibration. Additional information about the 

surroundings of the robot from sensor devices 

or offline prepared maps is needed. In the 

case of sensory generated maps, it is a 

question of precision and reduction of 

ambiguities to include information about echo 

causes and object shapes, respectively. In 

recent years, mainly two ways became 

apparent for map building and object 

classification purposes:

1) based on sensor arrays, capable of 

gathering information without sensor 

movement [6] ;

2) based on a few sensors utilizing typical 

scanning movements (e.g., rotary scans) 

[7], [8].

Because of unknown echo direction inside 

the sound lobe, the sensor axis is often 

used as representation of the echo direction 

for each measurement. Rotary scans on 

different positions using this simple 

geometric interpretation leads to the typical 

regions of constant depth (RCDs) which can 

be used to build a map [2]. The different 

reflection behavior of different object types 

(Fig. 2) influences the length of RCDs. In 

combination with amplitude information, this 

can be used to distinguish planes, edges, 

and corners [9],[10].
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2.3 Feature Extraction with Hough 

Transform

With the sonar model presented as Fig. 3, 

associating sonar returns to line segment 

geometric primitives may be stated as 

finding groups of sonar arcs all tangent to 

the same line.

Given the large amount of spurious data 

coming from moving people, specular 

reflections and sonar artifacts, the Hough 

Transform [7] seem very appropriate for the 

following reasons: 1) The location of line 

features can be easily described with two 

parameters, giving a 2D Hough space in 

which the voting process and the search for 

maxima can be done quite efficiently; 2) The 

sonar model presented can be used to 

restrict the votes generated by each sonar 

return to be located along the corresponding 

transformed sonar arc; 3) Since each sonar 

return emits a constant number of votes, the 

whole Hough process is linear with the 

number of returns processed; and 4) Being a 

voting scheme, it is intrinsically very robust 

against the presence of many spurious sonar 

returns.

If the location of the robot    

at time  is known, which can be obtained 

through the accumulation of encoder 

information. For more accuracy of the 

algorithm, we should consider the mounted 

position of each sonar sensor.
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Fig. 3 Modeling of Sonar Ring

The value of each sonar sensor offsets 

robot heading is (  ⋯),  is the 

sequence number of sonar, and Pioneer-DX 

mobile robot has 16 sonar sensors in all), 

which is invariable. Consequently, the   

sonar sensor position () in the 

state space is given in(1)∼(4):

      ⋯ (1)

      ⋯ (2)

    cos (3)

    sin (4)

Where   is the eccentric distance of sonar 

sensor, the value of   can be given in 

(6), which is the position of the extracted line 

segment represented in a base reference for:
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   
 (5)

   cos
 sin

 (6)

One of the key issues of its practical 

implementation is choosing the parameters 

defining the Hough space and their 

quantization. In our implementation, we 

perform some prior filtering for removing 

noisy data. Two filtering operations on sonar 

data points are used. First the sonar returns 

obtained along short trajectories(2m), which 

above a certain limit, distance readings were 

not very reliable, and thus were rejected. A 

second filtering operation, Let   be a set of 

sonar data points. A point    is rejected, 

if no other data point of   is found inside a 

circle of radius  and center at   .

Excellent results have been obtained with 

data sets  , which coming from a number of 

consecutive sonar-rings cans. In order to keep 

the odometry errors small,lines are represented 

in a base reference, using parameters  and 

 defining the line orientation and its 

distance to the origin (Fig. 3).

3. Data Fusion by Probabilistic Model

Data fusion is about deriving information 

about certain variables from observations of 

other variables. The application area is huge, 

see the special issue on data fusion in [3] for 

a recent overview. An edited collection of 

survey papers on data fusion in robotics and 

machine intelligent is given in [6]. Sensor 

fusion in general is discussed in [7].

From a probabilistic perspective, we have 

the following problem. Given two vector 

random variables  and , what does the 

observation    tell us about ? The 

complete answer is given by the so-called 

conditional probability density function,

 


(7)

Here  is the joint probability 

density for  and , and   is the 

probability density for . By using the dual 

as sumption, namely that    is given, we 

obtained the very useful Bayes rule

  

 
(8)

 


(9)

which is the key formula in Bayesian and 

maximum likelihood estimation theory. 

Different estimates of  can now be 

constructed from its distribution. The 

(conditional) minimal variance of  equals 

the conditional mean of  given   ,

      
∞

∞

 (10)

Another useful estimate is the maximum a 

posteriori estimate, which maximizes the 

function  . The rest is design and 
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analysis issues, i.e. formulating the underlying 

model, specifying probability density functions 

and calculating equality/variance properties. 

The most used probability density function is 

the Gaussian one(the Normal distribution). 

The main reason is that the conditional 

density function also will be Gaussian, and 

analytic expressions of the minimal variance 

estimate can thus be obtained.

Let  and  be jointly Gaussian, i.e. 

   ′ ′ is Gaussian with mean and 

covariance

 










 ∑ 




∑ ∑∑ ∑




 (11)

Then  conditional on    has a Gaussian 

distribution with mean and covariance,

  ∑∑
  

∑  ∑ ∑∑
∑

(12)

Hence the conditional mean of  given 

  , equals

      ∑∑
   (13)

Almost all practical estimators are special 

cases of the above result. The expression is 

called the fundamental equations of linear 

estimation in [10]. This reference also 

provides a very good introduction to 

estimation theory, in general, and tracking, in 

particular.

4. Simulation Setup and Results

We setup a mobile robot for simulation, 

and use an ultrasonic sensors are used for 

the navigation control. The ultrasonic sensor 

is used for recognizing environment, which is 

rotated by a step motor within 180 degrees; 

the CCD camera is used for detecting 

obstacles. 

Single Sensor Data Fusion(SSDF)and Multi- 

Sensor Data Fusion(MSDF)have first been 

tested with experimentation to show the 

usefulness of MSDF in two environments 

respectively. Starting at (0.3m, 5m, 0 degree), 

avirtual robot was driven around a virtual 

square corridor onetime. 

In each round, the mobile robot stops a 

total of 12times to rescan the environment. 

The size of given map is 12m X 8m, the 

total distance traveled is 12 + 8=20meters, 

and the total number of scanning points is 

38. The comparison of navigation trajectory 

at all stops is shown in Fig. 4 and Fig. 5.

Figure 4 shows determination of the 

pointing vector based upon only current 

readings used SSDF. This robot was made to 

move randomly within the confines of the 

above setup and at the region, . There are 

a little of difference between SSDF and MSDF.

But at the rest of region, the robot moves 

keeping the distance between robot and 

obstacles constant and have some difficult 

local minimum trap problems at some places.
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Fig. 4 Experimental result used a SSDF scheme

Figure 5 shows MSDF scheme is applied 

for the measurement. And the results are 

compared to show the superiority of the 

proposed scheme. The robot was allowed to 

move keeping the distance between robot 

and obstacles constant at the region, .

The region , shows the improvement in 

steering at boxes obstacle. And the navigation 

experiments show that a mobile robot, 

utilizing MSDF scheme, can avoid obstacles 

and reach a given goal position in the 

workspace of a wide range of geometrical 

complexity. Experiments results using MSDF, 

show the robot can avoid obstacles (boxes 

and trash can) and follow the wall. 

Figure 4 and Figure 5 demonstrate one of 

many successful experiments. The algorithm 

is very effective in escaping local minima 

encountered in laboratory environments.

The mobile robot navigates along a corridor 

with 3m width and with some obstacles as 

shown in Figure 5. It demonstrates that the 

mobile robot avoids the obstacles intelligently 

and follows the corridor to the goal.

Fig. 5 Experimental result used a MSDF scheme

5. Conclusion

In this paper, we have described progress 

towards a vehicle localization system based 

on detailed physical and probabilistic 

modelling of the sonar sensing process, 

which promises to provide one substantial 

piece of this capability.

From a scientific/academic perspective it is 

important to study very general issues and 

approaches, were the ultimate aim is full 

autonomy. However, the engineering 

perspective is the opposite, i.e. one wants to 

solve a specific problem, e.g. a sonar sensor 

based feedback control algorithm for going 

through narrow doorways. However, the main 

issue for such research is scalability, i.e. is 

the solution of more general interest and can 

it be extended to more complex situations.
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