• Title/Summary/Keyword: Riemannian metric

Search Result 153, Processing Time 0.024 seconds

METRIC FOLIATIONS ON HYPERBOLIC SPACES

  • Lee, Kyung-Bai;Yi, Seung-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.63-82
    • /
    • 2011
  • On the hyperbolic space $D^n$, codimension-one totally geodesic foliations of class $C^k$ are classified. Except for the unique parabolic homogeneous foliation, the set of all such foliations is in one-one correspondence (up to isometry) with the set of all functions z : [0, $\pi$] $\rightarrow$ $S^{n-1}$ of class $C^{k-1}$ with z(0) = $e_1$ = z($\pi$) satisfying |z'(r)| ${\leq}1$ for all r, modulo an isometric action by O(n-1) ${\times}\mathbb{R}{\times}\mathbb{Z}_2$. Since 1-dimensional metric foliations on $D^n$ are always either homogeneous or flat (that is, their orthogonal distributions are integrable), this classifies all 1-dimensional metric foliations as well. Equations of leaves for a non-trivial family of metric foliations on $D^2$ (called "fifth-line") are found.

YANG-MILLS CONNECTIONS ON CLOSED LIE GROUPS

  • Pyo, Yong-Soo;Shin, Young-Lim;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.651-661
    • /
    • 2010
  • In this paper, we obtain a necessary and sufficient condition for a left invariant connection in the tangent bundle over a closed Lie group with a left invariant metric to be a Yang-Mills connection. Moreover, we have a necessary and sufficient condition for a left invariant connection with a torsion-free Weyl structure in the tangent bundle over SU(2) with a left invariant Riemannian metric g to be a Yang-Mills connection.

ZERO SCALAR CURVATURE ON OPEN MANIFOLDS

  • Kim, Seong-Tag
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.539-544
    • /
    • 1998
  • Let (M, g) be a noncompact complete Riemannian manifold of dimension n $\geq$ 3 with scalar curvature S, which is close to O. With conditions on a conformal invariant and scalar curvature of (M, g), we show that there exists a conformal metric (equation omitted), near g, whose scalar curvature (equation omitted) = 0 by gluing solutions of the corresponding partial differential equation on each bounded subsets $K_{i}$ with ∪$K_{i}$ = M.

  • PDF

CONSTANT NEGATIVE SCALAR CURVATURE ON OPEN MANIFOLDS

  • Kim, Seong-Tag
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.195-201
    • /
    • 1998
  • We let (M,g) be a noncompact complete Riemannian manifold of dimension n $\geq$ 3 with scalar curvatue S, which is close to -1. We show the existence of a conformal metric $\bar{g}$, near to g, whose scalar curvature $\bar{S}$ = -1 by gluing solutions of the corresponding partial differential equation on each bounded subsets $K_i$ with ${\bigcup}K_i$ = M.

  • PDF

FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE YAMABE FLOW

  • Fang, Shouwen;Yang, Fei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1113-1122
    • /
    • 2016
  • Let (M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Yamabe flow. In the paper we derive the evolution for the first eigenvalue of geometric operator $-{\Delta}_{\phi}+{\frac{R}{2}}$ under the Yamabe flow, where ${\Delta}_{\phi}$ is the Witten-Laplacian operator, ${\phi}{\in}C^2(M)$, and R is the scalar curvature with respect to the metric g(t). As a consequence, we construct some monotonic quantities under the Yamabe flow.

A NOTE ON DECREASING SCALAR CURVATURE FROM FLAT METRICS

  • Kim, Jongsu
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.647-655
    • /
    • 2013
  • We obtain $C^{\infty}$-continuous paths of explicit Riemannian metrics $g_t$, $0{\leq}t$ < ${\varepsilon}$, whose scalar curvatures $s(g_t)$ decrease, where $g_0$ is a flat metric, i.e. a metric with vanishing curvature. Most of them can exist on tori of dimension ${\geq}3$. Some of them yield scalar curvature decrease on a ball in the Euclidean space.

REMARKS ON THE TOPOLOGY OF LORENTZIAN MANIFOLDS

  • Choi, Young-Suk;Suh, Young-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.641-648
    • /
    • 2000
  • The purpose of this paper is to give a necessary and sufficient condition for a smooth manifold to admit a Lorentzian metric. As an application of this result, on Lorentzian manifolds we have shown that the existence of a 1-dimensional distribution is equivalent to the existence of a non-vanishing vector field.

  • PDF

Constant Scallop Height Tool Paths and Geodesic Parallels (일정 스켈럽 높이 공구경로와 축지평행선의 관계)

  • Kim Tae-Jung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.127-128
    • /
    • 2006
  • We introduce a novel approach for generating constant scallop height tool paths. We derive a Riemannian metric tensor from curvature tensors of a part surface and a tool surface. Then, we construct geodesic parallels from the newly constructed metric. Those geodesic parallels constitute an asymptotically-correct family of constant scallop height tool paths.

  • PDF

ON THE CONFORMAL DEFORMATION OVER WARPED PRODUCT MANIFOLDS

  • YOON-TAE JUNG;CHEOL GUEN SHIN
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • Let (M = B$\times$f F, g) be an ($n \geq3$ )-dimensional differential manifold with Riemannian metric g. We solve the following elliptic nonlinear partial differential equation (equation omitted). where $\Delta_{g}$ is the Laplacian in the $\Delta$g-metric and ($h(\chi)$) is the scalar curvature of g and ($H(\chi)$) is a function on M.

  • PDF

C12-SPACE FORMS

  • Gherici Beldjilali;Nour Oubbiche
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.629-641
    • /
    • 2023
  • The aim of this paper is two-fold. First, we study the Chinea-Gonzalez class C12 of almost contact metric manifolds and we discuss some fundamental properties. We show there is a one-to-one correspondence between C12 and Kählerian structures. Secondly, we give some basic results for Riemannian curvature tensor of C12-manifolds and then establish equivalent relations among 𝜑-sectional curvature. Concrete examples are given.