DOI QR코드

DOI QR Code

YANG-MILLS CONNECTIONS ON CLOSED LIE GROUPS

  • Pyo, Yong-Soo (Department of Applied Mathematics Pukyong National University) ;
  • Shin, Young-Lim (Department of Applied Mathematics Pukyong National University) ;
  • Park, Joon-Sik (Department of Mathematics Pusan University of Foreign Studies)
  • Received : 2010.10.07
  • Accepted : 2010.11.15
  • Published : 2010.12.25

Abstract

In this paper, we obtain a necessary and sufficient condition for a left invariant connection in the tangent bundle over a closed Lie group with a left invariant metric to be a Yang-Mills connection. Moreover, we have a necessary and sufficient condition for a left invariant connection with a torsion-free Weyl structure in the tangent bundle over SU(2) with a left invariant Riemannian metric g to be a Yang-Mills connection.

Keywords

References

  1. S. Dragomir, T. Ichiyamy and H. Urakawa, Yang-Mills theory and conjugate connections, Differential Geom. Appl. 18 (2003), 229-238. https://doi.org/10.1016/S0926-2245(02)00149-3
  2. S. Helgeson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
  3. M. Itob, Compact Einstein-Weyl manifolds and the associated constant, Osaka J. Math. 35 (1998), 567-578.
  4. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York, 1963.
  5. Y. Matsushima, Differentiable Manifolds, Marcel Dekker, Inc, 1972.
  6. J. Milnor, Curvatures of left invariant metrics on Lie group, Adv. Math. 21 (1976), 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
  7. I. Mogi and M. Itob, Differential Geometry and Gauge Theory (in Japanese), Kyoritsu Publ., 1986.
  8. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. https://doi.org/10.2307/2372398
  9. K. Normizu and T. Sasaki, Affine Differential Geometry - Geometry of Affine Immersions, Cambridge Univ. Press, 1994.
  10. J.-S. Park, Yang-Mills connections in orthonormal frame bundles over SU(2), Tsukuba J. Math. 18 (1994), 203-206. https://doi.org/10.21099/tkbjm/1496162465
  11. J.-S. Park, Critical homogeneous metrics on the Heisenberg manifold, Inter. Inform. Sci. 11 (2005), 31-34.
  12. J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. Math 62 (2008), 217-220. https://doi.org/10.2206/kyushujm.62.217
  13. J.-S. Park, Yang-Mills connection with Weyl structure, Proc. Japan Academy, 84, Ser. A (2008), 129-132. https://doi.org/10.3792/pjaa.84.129
  14. J.-S. Park, Invariant Yang-Mills connections with Weyl structure, J. of Geometry and Physics 60 (2010), 1950-1957. https://doi.org/10.1016/j.geomphys.2010.08.003
  15. J.-S. Park, Projectively flat Yang-Mills connections, Kyushu J. Math. 64 (2010), 49-58.
  16. H. Pedersen, Y. S. Poon and A. Swann, Einstein-Weyl deformations and sub-manifolds, Internat. J. Math. 7 (1996), 705-719. https://doi.org/10.1142/S0129167X96000372
  17. Walter A. Poor, Differential Geometric Structures, McGraw-Hill, Inc. 1981.
  18. Y.-S. Pyo, H. W. Kim and J.-S. Park, On Ricci curvatures of left invariant metrics on SU(2), Bull. Kor. Math, Soc. 46 (2009), 255-261. https://doi.org/10.4134/BKMS.2009.46.2.255
  19. K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on SU(2,C) and SO(3.R), Math. Japonica 26 (1981), 153-159.

Cited by

  1. RICCI AND SCALAR CURVATURES ON SU(3) vol.34, pp.2, 2012, https://doi.org/10.5831/HMJ.2012.34.2.231