• Title/Summary/Keyword: Riemannian geometry

Search Result 88, Processing Time 0.024 seconds

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • We study the geometry of r-lightlike submanifolds M of a semi-Riemannian manifold $\bar{M}$ with a semi-symmetric non-metric connection subject to the conditions; (a) the screen distribution of M is totally geodesic in M, and (b) at least one among the r-th lightlike second fundamental forms is parallel with respect to the induced connection of M. The main result is a classification theorem for irrotational r-lightlike submanifold of a semi-Riemannian manifold of index r admitting a semi-symmetric non-metric connection.

INVARIANT AND SCREEN SEMI-INVARIANT LIGHTLIKE SUBMANIFOLDS OF A METALLIC SEMI-RIEMANNIAN MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Jasleen Kaur;Rajinder Kaur
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.407-424
    • /
    • 2024
  • The present work aims to introduce the geometry of invariant and screen semi-invariant lightlike submanifolds of a metallic semi-Riemannian manifold equipped with a quarter symmetric non-metric connection. The study establishes the characterization of integrability and parallelism of the distributions inherent in these submanifolds. Additionally, the conditions for distributions defining totally geodesic foliations on the invariant and screen semi-invariant lightlike submanifolds of metallic semi-Riemannian manifold are specified.

ON THE SPECTRAL GEOMETRY FOR THE JACOBI OPERATORS OF HARMONIC MAPS INTO PRODUCT MANIFOLDS

  • Kang, Tae-Ho;Ki, U-Hang;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.483-500
    • /
    • 1997
  • We investigate the geometric properties reflected by the spectra of the Jacobi operator of a harmonic map when the target manifold is a Riemannian product manifold or a Kaehlerian product manifold. And also we study the spectral characterization of Riemannian sumersions when the target manifold is $S^n \times S^n$ or $CP^n \times CP^n$.

  • PDF

STABILIZATION OF VISCOELASTIC WAVE EQUATION WITH VARIABLE COEFFICIENTS AND A DELAY TERM IN THE INTERNAL FEEDBACK

  • Liang, Fei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1457-1470
    • /
    • 2017
  • In this paper, we consider the stabilization of the viscoelastic wave equation with variable coefficients in a bounded domain with smooth boundary, subject to linear dissipative internal feedback with a delay. Our stabilization result is mainly based on the use of the Riemannian geometry methods and Lyapunov functional techniques.

NULL CURVES IN A SEMI-RIEMANNIAN MANIFOLD OF INDEX 2

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.231-253
    • /
    • 2007
  • The purpose of this paper is to study the geometry of null curves in a semi-Riemannian manifold (M, g) of index 2. We show that it is possible to construct new Frenet equations of two types of null curves in M.

  • PDF

LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-770
    • /
    • 2012
  • In this paper, we study the geometry lightlike hypersurfaces (M, $g$, S(TM)) of a semi-Riemannian manifold ($\tilde{M}$, $\tilde{g}$) of quasi-constant curvature subject to the conditions: (1) The curvature vector field of $\tilde{M}$ is tangent to M, and (2) the screen distribution S(TM) is either totally geodesic in M or totally umbilical in $\tilde{M}$.

SLANT SUBMANIFOLDS OF AN ALMOST PRODUCT RIEMANNIAN MANIFOLD

  • Sahin Bayram
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.717-732
    • /
    • 2006
  • In this paper, we study both slant 3nd semi-slant sub-manifolds of an almost product Riemannian manifold. We give characterization theorems for slant and semi-slant submanifolds and investigate special class of slant submanifolds which are product version of Kaehlerian slant submanifold. We also obtain integrability conditions for the distributions which are involved in the definition of a semi-slant submanifold. Finally, we prove a theorem on the geometry of leaves of distributions under a condition.

NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII

  • Park, Jeong-Hyeong;Sekigawa, Kouei
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1255-1265
    • /
    • 2009
  • We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius $\gamma$ reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the $\eta$-Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.