• 제목/요약/키워드: Riemann-Zeta

검색결과 53건 처리시간 0.02초

다중 셀 CDMA 셀룰라 시스템에서 Riemann-Zeta 함수를 이용한 간섭과 용량 근사식 (Interference and Capacity Approximation using Riemann-Zeta Function in Multi-Tier CDMA Cellular Systems)

  • 김호준
    • 한국통신학회논문지
    • /
    • 제28권7A호
    • /
    • pp.503-510
    • /
    • 2003
  • CDMA 셀룰라 시스템은 같은 시간에 같은 주파수를 모든 사용자들이 같이 사용하므로 자기 신호 외의 다른 사용자의 신호는 간섭으로 나타나 통신 품질에 영향을 미친다. 이 간섭의 양에 따라 단위 셀당 사용자 수로 정의되는 시스템의 용량이 결정되며 간섭량의 정확한 계산이 이루어져야 시스템 성능 평가를 정확히 할 수 있다. 본 논문은 임의의 겹(tiers) 구조를 갖는 다중 셀 구성의 CDMA 셀룰라 시스템의 타셀 간섭량을 계산하기 위해 Riemann-Zeta 함수를 이용하여 임의의 전파 감쇄 지수에도 적용할 수 있는 근사식을 제안하였고, 제안된 식의 수치 결과와 시뮬레이션 결과를 비교하여 그 효용을 살펴보았다. 제안된 근사식을 이용해 계산한 타셀 간섭량과 시스템 용량은 시뮬레이션을 통해 얻은 결과를 중심으로 상한과 하한을 이루고 있으며 겹 수에 따른 값의 변화가 평균 간섭 및 용량 계산치와 일치하는 결과를 얻었다. 제안된 타셀 간섭 근사식은 복합적인 전파 환경이 공존하는 계층셀(Hierarchical Cellular) 시스템에서의 간섭 및 용량 계산과 알고리즘 검증에 유용하게 사용될 수 있을 것으로 생각된다.

DETERMINANTS OF THE LAPLACIANS ON THE n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

  • Choi, June-Sang
    • 호남수학학술지
    • /
    • 제33권3호
    • /
    • pp.321-333
    • /
    • 2011
  • During the last three decades, the problem of evaluation of the determinants of the Laplacians on Riemann manifolds has received considerable attention by many authors. The functional determinant for the n-dimensional sphere $S^n$ with the standard metric has been computed in several ways. Here we aim at computing the determinants of the Laplacians on $S^n$ (n = 8, 9) by mainly using ceratin known closed-form evaluations of series involving Zeta function.

ON SOME SOLUTIONS OF A FUNCTIONAL EQUATION RELATED TO THE PARTIAL SUMS OF THE RIEMANN ZETA FUNCTION

  • Martinez, Juan Matias Sepulcre
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.29-41
    • /
    • 2014
  • In this paper, we prove that infinite-dimensional vector spaces of -dense curves are generated by means of the functional equations f(x)+f(2x)+${\cdots}$+f(nx) = 0, with $n{\geq}2$, which are related to the partial sums of the Riemann zeta function. These curves ${\alpha}$-densify a large class of compact sets of the plane for arbitrary small ${\alpha}$, extending the known result that this holds for the cases n = 2, 3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the $n^{th}$ power of the density approaches the Jordan content of the compact set which the curve densifies.

EVALUATIONS OF $\zeta(2n)$

  • Choi, June-Sang
    • East Asian mathematical journal
    • /
    • 제16권2호
    • /
    • pp.233-237
    • /
    • 2000
  • Since the time of Euler, there have been many proofs giving the value of $\zeta(2n)$. We also give an evaluation of $\zeta(2n)$ by analyzing the generating function of Bernoulli numbers.

  • PDF

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • 제19권2호
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

A FAMILY OF FUNCTIONS ASSOCIATED WITH THREE TERM RELATIONS AND EISENSTEIN SERIES

  • Aygunes, Aykut Ahmet
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1671-1683
    • /
    • 2016
  • Abstract. In this paper, for $a{\in}C$, we investigate functions $g_a$ and ${\psi}_a$ associated with three term relations. $g_a$ is defined by means of function ${\psi}_a$. By using these functions, we obtain some functional equations related to the Eisenstein series and the Riemann zeta function. Also we find a generalized difference formula of function $g_a$.

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.

수학사적 관점에서 오일러 및 베르누이 수와 리만 제타함수에 관한 탐구 (On the historical investigation of Bernoulli and Euler numbers associated with Riemann zeta functions)

  • 김태균;장이채
    • 한국수학사학회지
    • /
    • 제20권4호
    • /
    • pp.71-84
    • /
    • 2007
  • 베르누이가 처음으로 자연수 k에 대하여 합 $S_n(k)=\sum_{{\iota}=1}^n\;{\iota}^k$에 관한 공식들을 유도하는 방법을 발견하였다([4]). 그 이후, 리만 제타함수와 관련된 베르누이 수와 오일러 수에 관한 성질들이 연구되어왔다. 최근에 김태균은 $\mathbb{Z}_p$상에서 p-진 q-적분과 관련된 확장된 q-베르누이 수와 q-오일러 수, 연속된 q-정수의 멱수의 합에 관한 성질들을 밝혔다. 본 논문에서는 연속된 q-정수의 멱수의 합에 관한 역사적 배경과 발달과정을 고찰하고, 오일러 및 베르누이 수와 관련된 리만 제타함수가 해석적 함수로써 값을 가지는 문제를 q-확장된 부분의 이론으로 연구되어온 q-오일러 제타함수에 대해 체계적으로 논의한다.

  • PDF

A CLASS OF SERIES INVOLVING THE ZETA FUNCTION

  • Lee, Hye-Rim;Cho, Young-Joon;Lee, Keum-Sik;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • 제16권2호
    • /
    • pp.303-315
    • /
    • 2000
  • The authors apply the theory of multiple Gamma functions, which was recently revived in the study of the determinants of the Laplacians, in order to present a class of closed-form evaluations of series involving the Zeta function by appealing only to the definitions of the double and triple Gamma functions.

  • PDF

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.