DOI QR코드

DOI QR Code

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Published : 2007.09.30

Abstract

In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

Keywords

References

  1. H. Alzer, D. Karayannakis, and H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl. 320 (2006), no. 1, 145-162 https://doi.org/10.1016/j.jmaa.2005.06.059
  2. R. Apery, Irrationaliie de $\zeta$(2) et $\zeta$(3), Asterisque 61 (1979), 11-13
  3. R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086 https://doi.org/10.2307/2319041
  4. J. M. Borwein, D. M. Bradley, and R. E. Crandall, Computational strategies for the Riemann zeta function, J. Comput. Appl. Math. 121 (2000), no. 1-2, 247-296 https://doi.org/10.1016/S0377-0427(00)00336-8
  5. M.-P. Chen and H. M. Srivastava, Some families of series representations for the Riemann $\zeta$(3), Results Math. 33 (1998), no. 3-4,179-197 https://doi.org/10.1007/BF03322082
  6. J. Choi, Y. J. Cho, and H. M. Srivastava, Series involving the zeta function and multiple gamma functions, Appl. Math. Comput. 159 (2004), no. 2, 509-537 https://doi.org/10.1016/j.amc.2003.08.134
  7. J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch zeta function, Appl. Math. Comput. 170 (2005), no. 1, 399-409 https://doi.org/10.1016/j.amc.2004.12.004
  8. J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), no. 1, 51-70 https://doi.org/10.1007/s11139-005-3505-6
  9. J. Choi, H. M. Srivastava, and V. S. Adamchik, Multiple gamma and related functions, Appl. Math. Comput. 134 (2003), no. 2-3, 515-533 https://doi.org/10.1016/S0096-3003(01)00301-0
  10. D. Cvijovic and J. Klinowski, New rapidly convergent series representations for $\zeta$ (2n + 1), Proc. Amer. Math. Soc. 125 (1997), no. 5, 1263-1271 https://doi.org/10.1090/S0002-9939-97-03795-7
  11. A. Dabrowski, A note on values of the Riemann zeta function at positive odd integers, Nieuw Arch. Wisk. (4) 14 (1996), no. 2, 199-207
  12. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II, Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953
  13. J. A. Ewell, A new series representation for $\zeta$ (3), Amer. Math. Monthly 97 (1990), no. 3, 219-220 https://doi.org/10.2307/2324688
  14. J. A. Ewell, On the zeta function values $\zeta$ (2k + 1), k = 1,2, ... , Rocky Mountain J. Math. 25 (1995), no. 3, 1003-1012 https://doi.org/10.1216/rmjm/1181072201
  15. M. Garg, K. Jain, and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Huruntz-Lercli zeta functions, Integral Transforms Spec. Funet. 17 (2006), no. 11, 803-815 https://doi.org/10.1080/10652460600926907
  16. M. L. Glasser, Some integrals of the arctangent function, Math. Comput. 22 (1968), no. 102, 445-447 https://doi.org/10.2307/2004678
  17. R. W. Gosper, Jr., A calculus of series rearrangements, Algorithms and complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1976), pp. 121-151. Academic Press, New York, 1976
  18. E. R. Hansen, A Table of Series and Products, Englewood Cliffs, NJ, Prentice-Hall, 1975
  19. M. M. Hjortnaes, Overforing av rekken$\sum_{k=1}^{\infty}\;(1/k^3)$ til et bestemt integral, Proceedings of the Twelfth Scandanavian Mathematical Congress (Lund; August 10-15, 1953), pp. 211-213, Scandanavian Mathematical Society, Lund, 1954
  20. S. Kanemitsu, H. Kumagai, and M. Yoshimoto, Sums involving the Hurwitz zeta function, Ramanujan J. 5 (2001), no. 1,5-19 https://doi.org/10.1023/A:1011496709753
  21. S. Kanemitsu, H. Kumagai, H. M. Srivastava, and M. Yoshimoto, Some integral and asymptotic formulas associated with the Hurwitz zeta function, Appl, Math. Comput. 154 (2004), no. 3, 641-664 https://doi.org/10.1016/S0096-3003(03)00740-9
  22. N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58. Springer-Verlag, New York-Heidelberg, 1977
  23. S.-D. Lin, H. M. Srivastava, and P.-Y. Wang, Some expansion formulas for a class of generalized Huruntz-Lerch. zeta functions, Integral Transforms Spec. Funet. 17 (2006), no. 11, 817-827 https://doi.org/10.1080/10652460600926923
  24. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52 Springer-Verlag New York, Inc., New York 1966
  25. C. Nash and D. O'Connor, Ray-Singer torsion, topological field theories and the Riemann Zeta function at s = 3, in Low-Dimensional Topology and Quantum Field Theory (Proceedings of a NATO Advanced Research Workshop held at the Isaac Newton Institute at Cambridge, U.K.; September 6-12, 1992) (H. Osborn, Editor), pp. 279-288, Plenum Press, New York and London, 1993
  26. C. Nash and D. J. O'Connor, Ray-Singer torsion, topological field theories and the Riemann zeta function at s = 3, Low-dimensional topology and quantum field theory (Cambridge, 1992), 279-288, NATO Adv. Sci. Inst. Ser. B Phys., 315, Plenum, New York,1993
  27. V. Ramaswami, Notes on Riemann's $\zeta$-function, J. London Math. Soc. 9 (1934), 165-169 https://doi.org/10.1112/jlms/s1-9.3.165
  28. H. M. Srivastava, A unified presentation of certain classes of series of the Riemann zeta function, Riv. Mat. Univ. Parma (4) 14 (1988), 1-23
  29. H. M. Srivastava, Sums of certain series of the Riemann zeta function, J. Math. Anal. Appl. 134 (1988), no. 1, 129-140 https://doi.org/10.1016/0022-247X(88)90013-3
  30. H. M. Srivastava, Certain families of rapidly convergent series representations for $\zeta$(2n+l), Math. Sci. Res. Hot-Line 1 (6) (1997), 1-6
  31. H. M. Srivastava, Further series representations for $\zeta$(2n + 1), Appl. Math. Comput. 97 (1998), 1-15 https://doi.org/10.1016/S0096-3003(97)10145-X
  32. H. M. Srivastava, Some rapidly converging series for $\zeta$(2n + 1), Proc. Amer. Math. Soc. 127 (1999), no. 2, 385-396 https://doi.org/10.1090/S0002-9939-99-04945-X
  33. H. M. Srivastava, Some simple algorithms for the evaluations and representations of the Riemann zeta function at positive integer arguments, J. Math. Anal. Appl. 246 (2000), no. 2, 331-351 https://doi.org/10.1006/jmaa.2000.6746
  34. H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001
  35. H. M. Srivastava, M. L. Glasser, and V. S. Adamchik, Some definite integrals associated with the Riemann zeta function, Z. Anal. Anwendungen 19 (2000), no. 3, 831-846 https://doi.org/10.4171/ZAA/982
  36. H. M. Srivastava and H. Tsumura, A certain class of rapidly convergent series representations for $\zeta$(2n + 1), J. Comput. Appl. Math. 118 (2000), no. 1-2, 323-335 https://doi.org/10.1016/S0377-0427(00)00312-5
  37. H. M. Srivastava and H. Tsumura, New rapidly convergent series representations for $\zeta$(2n + 1), L(2n, X) and L(2n + 1, X), Math. Sci. Res. Hot-Line 4 (2000), no. 7, 17-24
  38. H. M. Srivastava and H. Tsumura , Inductive construction of rapidly convergent series representations for $\zeta$(2n+ 1), Int. J. Comput. Math. 80 (2003), no. 9, 1161-1173 https://doi.org/10.1080/0020716031000148494
  39. E. C. Titchmarsh, The theory of the Riemann zeta-function, Second edition, The Clarendon Press, Oxford University Press, New York, 1986
  40. F. G. Tricomi, Sulla somma delle inverse delle terze e quinte potenze dei numeri naiurali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969) 16-18
  41. H. Tsumura, On evaluation of the Dirichlet series at positive integers by q-calculation, J. Number Theory 48 (1994), no. 3, 383-391 https://doi.org/10.1006/jnth.1994.1074
  42. E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, Cambridge, 1996
  43. J. R. Wilton, A proof of Burnside's formula for log $\Gamma$ (x + 1) and certain allied properties of Riemann's $\zeta$-function, Messenger of Math. 52 (1922) 90-93
  44. E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), no. 1, 153-209 https://doi.org/10.1007/BF02100009
  45. N.-Y. Zhang and K. S. Williams, Some series representations of $\zeta$(2n+ 1), Rocky Mountain J. Math. 23 (1993), no. 4, 1581-1592 https://doi.org/10.1216/rmjm/1181072507

Cited by

  1. Limit Representations of Riemann’s Zeta Function vol.119, pp.4, 2012, https://doi.org/10.4169/amer.math.monthly.119.04.324