References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series 55, 1972.
- T. M. Apostol, Modular functions and Dirichlet Series in Number Theory, Berlin, Heidelberg, and New York, Springer-Verlag, 1976.
- T. M. Apostol, Introduction to Analytic Number Theory, Berlin, Heidelberg, and New York, Springer-Verlag, 1976.
- S. Bettin and B. Conrey, Period functions and cotangent sums, Algebra Number Theory 7 (2013), no. 1, 215-242. https://doi.org/10.2140/ant.2013.7.215
- R. Bruggeman, Automorphic forms, hyperfunction cohomology, and period functions, J. Reine Angew. Math. 492 (1997), 1-39.
- A. Ivic, The Riemann Zeta Function, John Wiley & Sons, 1985.
- J. B. Lewis, Spaces of holomorphic functions equivalent to the even Maass cusp forms, Invent. Math. 127 (1997), no. 2, 271-306. https://doi.org/10.1007/s002220050120
- J. B. Lewis and D. Zagier, Period functions and the Selberg zeta function for the modular group, The mathematical beauty of physics (Saclay, 1996), 83-97, Adv. Ser. Math. Phys., 24, World Sci. Publ., River Edge, NJ, 1997.
- J. B. Lewis and D. Zagier, Period functions for Maass wave forms. I, Ann. of Math. (2) 153 (2001), no. 1, 191-258. https://doi.org/10.2307/2661374
-
Y. Simsek, Relations between theta-functions, Hardy sums, Eisenstein series and Lambert series in the transformation formula of log
${\eta}_{1,h}$ (z), J. Number Theory 99 (2003), no. 2, 338-360. https://doi.org/10.1016/S0022-314X(02)00072-0 -
Y. Simsek, On Weierstrass
${\wp}$ (z)-function, Hardy sums and Eisenstein series, Proc. Jangjeon Math. Soc. 7 (2004), no. 2, 99-108. - H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, 2001.