Acknowledgement
Supported by : NSF
References
- I. Bakas, Conformal invariance, the KdV equation and coadjoint orbits of the Virasoro algebra, Nuclear Phys. B 302 (1988), no. 2, 189-203. https://doi.org/10.1016/0550-3213(88)90241-6
- M. Chaichian and P. Presnajder, Discrete-time quantum field theory and the deformed super-Virasoro algebra, Phys. Lett. A 322 (2004), no. 3-4, 156-165. https://doi.org/10.1016/j.physleta.2003.12.061
- Y.-S. Cheng, G.-A. Song, and B. Xin, Lie bialgebra structures on Lie algebras of block type, Algebra Colloq. 16 (2009), no. 4, 677-690. https://doi.org/10.1142/S1005386709000649
- V. G. Drinfeld, Constant quasiclassical solutions of the Yang-Baxter quantum equation, Soviet Math. Dokl. 28 (1983), no. 3, 667-671.
- V. G. Drinfeld, Quantum groups, In: Proceeding of the International Congress of Mathematicians, Vol. 1, 2, pp. 798-820, Berkeley, Calif. Providence, RI: Amer. Math. Soc., 1986.
- R. Farnsteiner, Derivations and central extensions of finitely generated graded Lie algebras, J. Algebra 118 (1988), no. 1, 33-45. https://doi.org/10.1016/0021-8693(88)90046-4
- P. Goddard, A. Kent, and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Commun. Math. Phys. 103 (1986), no. 1, 105-119. https://doi.org/10.1007/BF01464283
- X. Guo, R. Lu, and K. Zhao, Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra, Forum Math. 23 (2011), no. 5, 1029-1052. https://doi.org/10.1515/form.2011.036
- V. G. Kac, Superconformal algebras and transitive groups actions on quadrics, Commun. Math Phys. 186 (1997), no. 1, 233-252. https://doi.org/10.1007/BF02885680
- V. G. Kac and J. W. V. D. Leur, On Classification of Superconformal Algebras, Strings 88, Sinapore: World Scientific, 1988.
- I. Kenji and K. Yoshiyuki, Representation theory of N=2 super Virasoro algebra: twisted sector, J. Funct. Anal. 214 (2004), no. 2, 450-518. https://doi.org/10.1016/j.jfa.2003.07.003
- W. Michaelis, A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras, Adv. Math. 107 (1994), no. 2, 365-392. https://doi.org/10.1006/aima.1994.1062
- S.-H. Ng and E. J. Taft, Classification of the Lie bialgebra structures on the Witt and Virasoro algebras, J. Pure Appl. Algebra 151 (2000), no. 1, 67-88. https://doi.org/10.1016/S0022-4049(99)00045-6
- J. Patera and H. Zassenhaus, The higher rank Virasoro algebras, Commun. Math. Phys. 36 (1991), no. 3, 1-14.
- H. T. Sato, Deformation of super Virasoro algebra in noncommutative quantum superspace, Phys. Lett. B 415 (1997), no. 2, 170-174. https://doi.org/10.1016/S0370-2693(97)01228-8
- G.-A. Song and Y.-C. Su, Lie bialgebras of generalized Witt type, Sci. China Math. 49 (2006), no. 4, 533-544. https://doi.org/10.1007/s11425-006-0533-7
- Y.-C. Su and K. Zhao, Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series, J. Algebra 252 (2002), no. 2, 1-19. https://doi.org/10.1016/S0021-8693(02)00021-2
- H.-N. Wu, S. Wang, and X.-Q. Yue, Lie bialgebras of generalized loop Virasoro algebra, Chin. Ann. Math. Ser. B 3, (2015), no. 3, 437-446.
- H.-Y. Yang and Y.-C. Su, Lie super-bialgebra structures on generalized super-virasoro algebras, Acta Math. Sci. Ser. B Engl. Ed. 1 (2010), no. 1, 225-239.