• Title/Summary/Keyword: Riemann

Search Result 378, Processing Time 0.024 seconds

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

A FAMILY OF FUNCTIONS ASSOCIATED WITH THREE TERM RELATIONS AND EISENSTEIN SERIES

  • Aygunes, Aykut Ahmet
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1671-1683
    • /
    • 2016
  • Abstract. In this paper, for $a{\in}C$, we investigate functions $g_a$ and ${\psi}_a$ associated with three term relations. $g_a$ is defined by means of function ${\psi}_a$. By using these functions, we obtain some functional equations related to the Eisenstein series and the Riemann zeta function. Also we find a generalized difference formula of function $g_a$.

HÖLDER ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON PARAMETERS

  • Cho, Sang-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.241-252
    • /
    • 2011
  • Let $\{\Omega_{\tau}\}_{\tau{\in}I}$ be a family of strictly convex domains in $\mathbb{C}^n$. We obtain explicit estimates for the solution of the $\bar{\partial}$-equation on $\Omega{\times}I$ in H$\ddot{o}$lder space. We also obtain explicit point-wise derivative estimates for the $\bar{\partial}$-equation both in space and parameter variables.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

OPERATOR FRACTIONAL BROWNIAN SHEET AND MARTINGALE DIFFERENCES

  • Dai, Hongshuai;Shen, Guangjun;Xia, Liangwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.9-23
    • /
    • 2018
  • In this paper, inspired by the fractional Brownian sheet of Riemann-Liouville type, we introduce the operator fractional Brownian sheet of Riemman-Liouville type, and study some properties of it. We also present an approximation in law to it based on the martingale differences.

Further Results on Chebyshev and Steffensen Inequalities

  • Dahmani, Zoubir;Bounoua, Mohamed Doubbi
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • By making use of the Riemann-Liouville fractional integrals, we establish further results on Chebyshev inequality. Other Steffensen integral results of the weighted Chebyshev functional are also proved. Some classical results of the paper:[ Steffensen's generalization of Chebyshev inequality. J. Math. Inequal., 9(1), (2015).] can be deduced as some special cases.

DIFFERENTIALS OF THE BICOMPLEX FUNCTIONS FOR EACH CONJUGATIONS BY THE NAIVE APPROACH

  • Kang, Han Ul;Kim, Min Ji;Shon, Kwang Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.307-315
    • /
    • 2017
  • In this paper, we aim to compare the differentials with the regularity of the hypercomplex valued functions in Clifford analysis. For three kinds of conjugation of the bicomplex numbers, we define the differentials of the bicomplex number functions by the naive approach. And we investigate some relations of the corresponding Cauchy-Riemann system and the conditions of the differentiable functions in the bicomplex number system.