References
- P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc. 53 (2016), no. 5, 1183-1210. https://doi.org/10.4134/JKMS.j150458
- M. Ali Ozarslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52 (2010), no. 9-10, 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
- R. Caponetto, Fractional Order Systems: Modeling and Control Applications, World Scientific, 2010.
- M. Caputo, Elasticitae dissipazione Zanichelli, Bologna, 1969.
- M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastave, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
- C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London. Math. Soc. 27 (1938), no. 1, 389-400.
- R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Singapore, New York, 2000.
- S. L. Kalla and R. K. Saxena, Integral operators involving hypergeometric functions, Math. Z. 108 (1969), 231-234. https://doi.org/10.1007/BF01112023
- U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), no. 3, 860-865. https://doi.org/10.1016/j.amc.2011.03.062
- A. A. Kilbas and M. Saigo, H-transforms, Chapman & Hall/CRC, Boca Raton, FL, 2004.
- A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integral Transforms Spec. Funct. 19 (2008), no. 11-12, 869-883. https://doi.org/10.1080/10652460802295978
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.
- V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res Notes Math. 301, Longman Scientific & Technical; Harlow, Co-published with John Wiley, New York, 1994.
- V. S. Kiryakova, All the special functions are fractional differintegrals of elementary functions, J. Phys. A 30 (1997), no. 14, 5083-5103.
- V. S. Kiryakova, Multiple (multi-index) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000), no. 1-2, 241-259. https://doi.org/10.1016/S0377-0427(00)00292-2
- H. Kober, On fractional integrals and derivatives, Quart. J. Math., Oxford Ser. 11 (1940), 193-212.
- P. Malik, S. R. Mondal, and A. Swaminathan, Riemann-Liouville Fractional calculus for generalized Bessel functions, Proceedings of the ASME 2011, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 3 (2011), 409-418.
- P. Malik and A. Swaminathan, Derivatives of a finite class of orthogonal polynomials defined on positive real line related to F-Distribution, Comput. Math. Appl. 61 (2011), no. 4, 1180-1189. https://doi.org/10.1016/j.camwa.2010.12.067
- P. Malik and A. Swaminathan, Derivatives of a finite class of orthogonal polynomials related to inverse gamma distribution, Appl. Math. Comput. 218 (2012), no. 11, 6251-6262. https://doi.org/10.1016/j.amc.2011.11.078
- M. Masjedjamei, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, Integral Transforms Spec. Funct. 13 (2002), no. 2, 169-191. https://doi.org/10.1080/10652460212898
- A. C. McBride and G. F. Roach (Editors), Fractional Calculus, (University of Strathclyde, Glasgow, Scotland, August 5-11, 1984) Research Notes in Mathematics 138, Pitman Publishing Limited, London, 1985.
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993.
- Saiful. R. Mondal and K. S. Nisar, Marichev-Saigo-Maeda fractional integration operators of generalized Bessel functions, Mathematical Problems in Engineering 2014 (2014), Article ID 274093, 11 pages.
- K. Nishimoto, Fractional Calculus 1, 2, 3, 4, 5, Descartes Press, Koriyama, Japan, 1984, 1987, 1989, 1991, 1996.
- K. Nishimoto, Fractional Calculus and Its Applications, (May 29-June 1, 1989), Nihon University (College of Engineering), Koriyama, 1990.
- K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, New York, 1974.
- E. D. Rainville, Special Functions, Macmillan, New York, 1960.
- M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11 (1977/78), no. 2, 135-143.
- M. Saigo and A. A. Kilbas, Generalized fractional calculus of the H function, Fukuoka Univ. Sci. Rep. 29 (1999), no. 1, 31-45.
- M. Saigo and N. Maeda, More generalization of fractional calculus, Transform methods & special functions, Varna '96, 386-400, Bulgarian Acad. Sci., Sofia, 1998.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
- E. M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London, Ser. A. 238 (1940), 423-451. https://doi.org/10.1098/rsta.1940.0002
- E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (2) 46 (1940), 389-408.