DIFFERENTIALS OF THE BICOMPLEX FUNCTIONS FOR EACH CONJUGATIONS BY THE NAIVE APPROACH

Han Ul Kang, Min Ji Kim and Kwang Ho Shon*

Abstract

In this paper, we aim to compare the differentials with the regularity of the hypercomplex valued functions in Clifford analysis. For three kinds of conjugation of the bicomplex numbers, we define the differentials of the bicomplex number functions by the naive approach. And we investigate some relations of the corresponding Cauchy-Riemann system and the conditions of the differentiable functions in the bicomplex number system.

1. Introduction

The bicomplex number system \mathcal{B} is identified with \mathbb{C}^{2}, where \mathbb{C} is denoted by the complex number system. The bicomplex number system \mathcal{B} is a commutative real 4 dimensional (skew) field. And \mathcal{B} is considered by the extension of \mathbb{C}.

Many authors have studied the properties of the hypercomplex functions and applied to various Clifford algebra. In 1971, Naser [10] studied the hyperholomorphy of the hypercomplex functions, and provided several properties of the hyperholomorphic functions in the quaternion field. And Naser [10] obtained the corresponding Cauchy-Riemann equation, the corresponding Cauchy theorem, etc.

Recently, Kim et al. [5, 6] have investigated the regularity of the hypercomplex functions valued the ternary number and the reduced quaternion. Jung and Shon [1] have given the properties of regular functions on the dual ternary number system. And Jung et al. [2] have researched the structures of the dual quaternionic regular functions.

Received May 31, 2017. Accepted June 19, 2017.
2010 Mathematics Subject Classification. 54A25, 54A20, 54D55.
Key words and phrases. bicomplex number, bicomplex number valued function, differential, the corresponding Cauchy-Riemann system, Clifford analysis.

Lim and Shon [7] developed the properties of the split hypercomplex functions, and Kim and Shon [4] investigated the regularities of functions valued dual split quaternion in Clifford analysis.

Luna-Elizarrarás and Shapiro [8, 9] provided a survey on the hypercomplex number system in Clifford analysis. They described the bicomplex number functions and fundamental properties of the hypercomplex functions. Kang et al. [3] studied properties of regular functions for 3 kinds of the conjugation in the bicomplex number system. They provided the corresponding Cauchy-Riemann system and the corresponding Cauchy theorem for each conjugations of the bicomplex functions.

In this papaer, we aim to describe the relations of the differentials and the regularities of the bicomplex functions in Clifford analysis. We show the condition of the differentiable functions and the derivatives of the bicomplex functions. And we find some properties for the bicomplex functions for each conjugation in Clifford analysis.

2. Preliminary

The bicomplex number system \mathcal{B} over the real field \mathbb{R} is denoted by
$\mathcal{B}=\left\{z \mid z=z_{1}+e_{2} z_{2}, z_{j} \in \mathbb{C}(j=1,2)\right\}=\left\{z \mid z=\sum_{j=0}^{3} e_{j} x_{j}, x_{j} \in \mathbb{R}(j=1,2)\right\}$.
By the direct computation, we obtain the notation of the bicomplex number z as follows:

$$
\begin{aligned}
z & =z_{1}+e_{2} z_{2} \\
& =\left(x_{0}+e_{1} x_{1}\right)+e_{2}\left(x_{2}+e_{1} x_{3}\right) \\
& =x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3},
\end{aligned}
$$

where $e_{3}:=e_{2} e_{1}, z_{j}(j=1,2)$ are usual complex numbers and $x_{j}(j=$ $0,1,2,3$) are usual real numbers. By putting $e_{3}=e_{2} e_{1}$ with $e_{3}{ }^{2}=1$, the basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ satisfies the following properties:

$$
e_{0}=i d ., e_{1}^{2}=e_{2}^{2}=-1, e_{1} e_{2}=e_{2} e_{1}
$$

and

$$
e_{1} e_{3}=e_{3} e_{1}=-e_{2}, e_{2} e_{3}=e_{3} e_{2}=-e_{1} .
$$

There are three kinds of conjugation of bicomplex number z. The 1st kind of conjugation z^{*} with respect to e_{2} is determined by

$$
z^{*}:=z_{1}-e_{2} z_{2}\left(z_{1}, z_{2} \in \mathbb{C}\right)
$$

The 2 nd kind of conjugation $z^{\#}$ with respect to e_{1} is determined by

$$
z^{\#}:=\overline{z_{1}}+e_{2} \overline{z_{2}}\left(z_{1}, \quad z_{2} \in \mathbb{C}\right)
$$

and the 3 rd kind of conjugation z^{\dagger} is determined by

$$
z^{\dagger}:=\left(\left(z_{1}+e_{2} z_{2}\right)^{*}\right)^{\#}=\left(\left(z_{1}+e_{2} z_{2}\right)^{\#}\right)^{*}=\overline{z_{1}}-e_{2} \overline{z_{2}}\left(z_{1}, z_{2} \in \mathbb{C}\right)
$$

as the composition of the above two conjugations z^{*} and $z^{\#}$. The modulus of each kind of conjugations is defined by

$$
\begin{aligned}
|z|_{*}^{2}:=z z^{*} & =\left(z_{1}+e_{2} z_{2}\right)\left(z_{1}-e_{2} z_{2}\right) \\
& =z_{1}^{2}+z_{2}^{2} \\
|z|_{\#}^{2}:=z z^{\#} & =\left(z_{1}+e_{2} z_{2}\right)\left(\overline{z_{1}}+e_{2} \overline{z_{2}}\right) \\
& =z_{1} \overline{z_{1}}+e_{2}\left(z_{1} \overline{z_{2}}+z_{2} \overline{z_{1}}\right)-z_{2} \overline{z_{2}} \\
& =\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+2 e_{2} \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
|z|_{\dagger}^{2}:=z z^{\dagger} & =\left(z_{1}+e_{2} z_{2}\right)\left(\overline{z_{1}}-e_{2} \overline{z_{1}}\right) \\
& =z_{1} \overline{z_{1}}-e_{2}\left(z_{1} \overline{z_{2}}-z_{2} \overline{z_{1}}\right)+z_{2} \overline{z_{2}} \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 e_{2} \operatorname{Im}\left(z_{1} \overline{z_{2}}\right), \text { respectively. }
\end{aligned}
$$

The bicomplex number z has the unique inverse value for each kind of conjugation as follows:

$$
z_{*}^{-1}=\frac{z^{*}}{|z|_{*}^{2}}, z_{\#}^{-1}=\frac{z^{\#}}{|z|_{\#}^{2}} \text { and } \quad z_{\dagger}^{-1}=\frac{z^{\dagger}}{|z|_{\dagger}^{2}}
$$

for nonzero modulus $|z|_{*}^{2},|z|_{\#}^{2}$ and $|z|_{\dagger}^{2}$ of z, respectively.
Let Ω be a bounded open set in \mathcal{B}. A complex function $f: \Omega \rightarrow \mathcal{B}$ is defined by

$$
\begin{aligned}
f(z) & =f_{1}+e_{2} f_{2} \\
& =\left(u_{0}+e_{1} u_{1}\right)+e_{2}\left(u_{2}+e_{1} u_{3}\right) \\
& =u_{0}+e_{1} u_{1}+e_{2} u_{2}+e_{3} u_{3}
\end{aligned}
$$

where $u_{j}=u_{j}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)(j=0,1,2,3)$ are real valued functions and f_{1}, f_{2} are complex valued functions of two complex variables z_{1} and z_{2}.

We consider bicomplex differential operators as follows :

$$
\begin{aligned}
D & :=\frac{1}{2}\left(\frac{\partial}{\partial z_{1}}-e_{2} \frac{\partial}{\partial z_{2}}\right), \\
D^{*} & =\frac{1}{2}\left(\frac{\partial}{\partial z_{1}}+e_{2} \frac{\partial}{\partial z_{2}}\right), \\
D^{\#} & =\frac{1}{2}\left(\frac{\partial}{\partial \overline{z_{1}}}-e_{2} \frac{\partial}{\partial \overline{z_{2}}}\right), \\
D^{\dagger} & =\frac{1}{2}\left(\frac{\partial}{\partial \overline{z_{1}}}+e_{2} \frac{\partial}{\partial \overline{z_{2}}}\right) .
\end{aligned}
$$

Definition 2.1. Let Ω be a bounded open set in \mathcal{B}. A function f is said to be the 1st(2nd, 3rd)-regular function in Ω if
(a) $f \in C^{1}(\Omega)$,
(b) $D^{*} f=0\left(D^{\#} f=0, D^{\dagger} f=0\right)$ in Ω.

3. Differentials of bicomplex number functions

Let Ω be a bounded open set in $\mathcal{B}, z \in \Omega$ and let $f: \Omega \rightarrow \mathcal{B}$ defined by $f(z)=e_{0} u_{0}+e_{1} u_{1}+e_{2} u_{2}+e_{3} u_{3}$ a bicomplex function. For increment of the argument at the point z, we put a bicomplex number $h \neq 0$ satisfying $z+h \in \Omega$. Then we can consider
$f(z+h)-f(z)=\sum_{j=0}^{3} e_{j} u_{j}(z+h)-\sum_{j=0}^{3} e_{j} u_{j}(z)=\sum_{j=0}^{3} e_{j}\left(u_{j}(z+h)-u_{j}(z)\right)$.
Since h is an arbitrary element of \mathcal{B}, h can be expressed by $h=$ $a+e_{1} b+e_{2} c+e_{3} d$ for $a, b, c, d \in \mathbb{R}$. Then the 1 st-inverse of h is

$$
h_{*}^{-1}=\frac{a+e_{1} b-e_{2} c-e_{3} d}{a^{2}+b^{2}+c^{2}+d^{2}} .
$$

And the 2nd-inverse and 3rd-inverse are

$$
h_{\#}^{-1}=\frac{a-e_{1} b+e_{2} c-e_{3} d}{a^{2}+b^{2}+c^{2}+d^{2}} \text { and } h_{\dagger}^{-1}=\frac{\mathrm{a}-\mathrm{e}_{1} \mathrm{~b}-\mathrm{e}_{2} \mathrm{c}+\mathrm{e}_{3} \mathrm{~d}}{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}} .
$$

Definition 3.1. Let Ω be a bounded open set in \mathcal{B} and $z \in \Omega$. A function f is defined on a bounded open set Ω. If $h_{*}^{-1}\{f(z+h)-f(z)\}$ has a limit as $h \rightarrow 0$, then we say that f is the 1st-differentiable function at $z \in \Omega$. And the limit is said to be the 1st-derivative of f at z and denoted by

$$
\begin{equation*}
f_{*}^{\prime}(z):=h_{*}^{-1} \lim _{h \rightarrow 0}\{f(z+h)-f(z)\} . \tag{1}
\end{equation*}
$$

Definition 3.2. Let Ω be a bounded open set in \mathcal{B} and $z \in \Omega$. A function f is defined on a bounded open set Ω. If $h_{\#}^{-1}\{f(z+h)-$ $f(z)\}\left(h_{\dagger}^{-1}\{f(z+h)-f(z)\}\right)$ has a limit as $h \rightarrow 0$, then we say that f is the 2nd-differentiable (3rd-differentiable) function at $z \in \Omega$. And the limit is said to be the 2nd-derivative of (3rd-derivative) f at z and denoted by

$$
f_{\#}^{\prime}(z):=h_{\#}^{-1} \lim _{h \rightarrow 0}\{f(z+h)-f(z)\} \quad\left(f_{\dagger}^{\prime}(z):=h_{\dagger}^{-1} \lim _{h \rightarrow 0}\{f(z+h)-f(z)\}\right)
$$

Proposition 3.3. Let Ω be a bounded open set in \mathcal{B}. If the function f is the 1st-differentiable function at $z \in \Omega$, then f satisfies

$$
\begin{equation*}
f_{*}^{\prime}(z)=\frac{\partial f}{\partial x_{0}}=e_{1} \frac{\partial f}{\partial x_{1}}=-e_{2} \frac{\partial f}{\partial x_{2}}=-e_{3} \frac{\partial f}{\partial x_{3}} \tag{2}
\end{equation*}
$$

In cases f is the 2 nd (3rd)-differentiable function in $z \in \Omega$, f satisfies

$$
\begin{gathered}
f_{\#}^{\prime}(z)=\frac{\partial f}{\partial x_{0}}=-e_{1} \frac{\partial f}{\partial x_{1}}=e_{2} \frac{\partial f}{\partial x_{2}}=-e_{3} \frac{\partial f}{\partial x_{3}} \\
\left(f_{\dagger}^{\prime}(z)=\frac{\partial f}{\partial x_{0}}=-e_{1} \frac{\partial f}{\partial x_{1}}=-e_{2} \frac{\partial f}{\partial x_{2}}=e_{3} \frac{\partial f}{\partial x_{3}}\right) .
\end{gathered}
$$

Proof. By direct computation, we know

$$
\begin{aligned}
& h_{*}^{-1}\{f(z+h)-f(z)\} \\
= & \frac{a+e_{1} b-e_{2} c-e_{3} d}{a^{2}+b^{2}+c^{2}+d^{2}}\left\{\left(u_{0}(z+h)-u_{0}(z)\right)\right. \\
& \left.+e_{1}\left(u_{1}(z+h)-u_{1}(z)\right)+e_{2}\left(u_{2}(z+h)-u_{2}(z)\right)+e_{3}\left(u_{3}(z+h)-u_{3}(z)\right)\right\} \\
= & \frac{a+e_{1} b-e_{2} c-e_{3} d}{a^{2}+b^{2}+c^{2}+d^{2}}\left[u_{0}\left(x_{0}+h, x_{1}+h, x_{2}+h, x_{3}+h\right)-u_{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right. \\
& +e_{1}\left\{u_{1}\left(x_{0}+h, x_{1}+h, x_{2}+h, x_{3}+h\right)-u_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \\
& +e_{2}\left\{u_{2}\left(x_{0}+h, x_{1}+h, x_{2}+h, x_{3}+h\right)-u_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \\
& \left.+e_{3}\left\{u_{3}\left(x_{0}+h, x_{1}+h, x_{2}+h, x_{3}+h\right)-u_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\}\right] .
\end{aligned}
$$

Considering the cases of that h forms $h=a, e_{1} b, e_{2} c$ and $e_{3} d$.
At first, if $h=a$, then

$$
\begin{aligned}
h_{*}^{-1}\{f(z+h)-f(z)\}= & h_{*}^{-1}\{f(z+a)-f(z)\} \\
= & \frac{1}{a}\left[u_{0}\left(x_{0}+a, x_{1}, x_{2}, x_{3}\right)-u_{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right. \\
& +e_{1}\left\{u_{1}\left(x_{0}+a, x_{1}, x_{2}, x_{3}\right)-u_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \\
& +e_{2}\left\{u_{2}\left(x_{0}+a, x_{1}, x_{2}, x_{3}\right)-u_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \\
& \left.+e_{3}\left\{u_{3}\left(x_{0}+a, x_{1}, x_{2}, x_{3}\right)-u_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\}\right] .
\end{aligned}
$$

So we have

$$
\begin{align*}
\lim _{h \rightarrow 0} h_{*}^{-1}\{f(z+h)-f(z)\} & =\frac{\partial u_{0}}{\partial x_{0}}+e_{1} \frac{\partial u_{1}}{\partial x_{0}}+e_{2} \frac{\partial u_{2}}{\partial x_{0}}+e_{3} \frac{\partial u_{3}}{\partial x_{0}} \\
& =\frac{\partial f}{\partial x_{0}} \tag{3}
\end{align*}
$$

In case of $h=e_{1} b$,

$$
\begin{aligned}
h_{*}^{-1}\{f(z+h)-f(z)\}= & h_{*}^{-1}\left\{f\left(z+e_{1} b\right)-f(z)\right\} \\
= & \frac{e_{1}}{b}\left[u_{0}\left(x_{0}, x_{1}+b, x_{2}, x_{3}\right)-u_{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right. \\
& +e_{1}\left\{u_{1}\left(x_{0}, x_{1}+b, x_{2}, x_{3}\right)-u_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \\
& +e_{2}\left\{u_{2}\left(x_{0}, x_{1}+b, x_{2}, x_{3}\right)-u_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\} \\
& \left.+e_{3}\left\{u_{3}\left(x_{0}, x_{1}+b, x_{2}, x_{3}\right)-u_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\}\right] .
\end{aligned}
$$

So we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} h_{*}^{-1}\{f(z+h)-f(z)\} & =e_{1} \frac{\partial u_{0}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{1}}+e_{3} \frac{\partial u_{2}}{\partial x_{1}}-e_{2} \frac{\partial u_{3}}{\partial x_{1}} \\
& =e_{1}\left(\frac{\partial u_{0}}{\partial x_{1}}+e_{1} \frac{\partial u_{1}}{\partial x_{1}}+e_{2} \frac{\partial u_{2}}{\partial x_{1}}+e_{3} \frac{\partial u_{3}}{\partial x_{1}}\right)
\end{aligned}
$$

$$
\begin{equation*}
=e_{1} \frac{\partial f}{\partial x_{1}} \tag{4}
\end{equation*}
$$

Similarly, we have
(5) $\quad \lim _{h \rightarrow 0} h_{*}^{-1}\{f(z+h)-f(z)\}=-e_{2} \frac{\partial f}{\partial x_{2}}\left(\right.$ when $\left.\mathrm{h}=\mathrm{e}_{2} \mathrm{c}\right)$
and
(6) $\lim _{h \rightarrow 0} h_{*}^{-1}\{f(z+h)-f(z)\}=-e_{3} \frac{\partial f}{\partial x_{3}}\left(\right.$ when $\left.\mathrm{h}=\mathrm{e}_{3} \mathrm{~d}\right)$.

All limits of each case have to be same to clarify (1). By (3), (4), (5) and (6), we obtain (2).

Similarly in cases of the 2nd-differentiable functions and the 3rddifferentiable functions, we can obatin the results.

Theorem 3.4. Let Ω be a bounded open set in \mathcal{B}. A function f is regular in Ω if and only if f is the 1 st (2nd, 3rd)-differentiable function at $z \in \Omega$:

$$
\left.\begin{array}{c}
D^{*} f=0 \quad \text { iff } \frac{\partial f}{\partial x_{0}}=e_{1} \frac{\partial f}{\partial x_{1}}=-e_{2} \frac{\partial f}{\partial x_{2}}=-e_{3} \frac{\partial f}{\partial x_{3}} \\
\left(\begin{array}{c}
D^{\#} f=0
\end{array} \quad \text { iff } \frac{\partial f}{\partial x_{0}}=-e_{1} \frac{\partial f}{\partial x_{1}}=e_{2} \frac{\partial f}{\partial x_{2}}=-e_{3} \frac{\partial f}{\partial x_{3}}\right. \\
D^{\dagger} f=0 \quad \text { iff } \frac{\partial f}{\partial x_{0}}=-e_{1} \frac{\partial f}{\partial x_{1}}=-e_{2} \frac{\partial f}{\partial x_{2}}=e_{3} \frac{\partial f}{\partial x_{3}}
\end{array}\right) .
$$

Proof. We consider $\frac{\partial}{\partial z_{j}}$ and $\frac{\partial}{\partial \overline{z_{j}}}(j=1,2)$ are usual complex differential operators. Then, we denote

$$
\frac{\partial}{\partial x_{0}}=\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial \bar{z}_{1}}, \quad \frac{\partial}{\partial x_{1}}=-e_{1}\left(\frac{\partial}{\partial \overline{z_{1}}}-\frac{\partial}{\partial z_{1}}\right)
$$

$$
\begin{equation*}
\frac{\partial}{\partial x_{2}}=\frac{\partial}{\partial z_{2}}+\frac{\partial}{\partial \overline{z_{2}}} \quad \text { and } \quad \frac{\partial}{\partial x_{3}}=-e_{1}\left(\frac{\partial}{\partial \overline{z_{2}}}-\frac{\partial}{\partial z_{2}}\right) . \tag{7}
\end{equation*}
$$

Since the function f is the 1st-regular function, f satisfies (2). So, we have the following equations by (7):

$$
\frac{\partial f}{\partial z_{1}}+\frac{\partial f}{\partial \overline{z_{1}}}=-e_{1}^{2}\left(\frac{\partial f}{\partial \overline{z_{1}}}-\frac{\partial f}{\partial z_{1}}\right)=-e_{2}\left(\frac{\partial f}{\partial z_{2}}+\frac{\partial f}{\partial \overline{z_{2}}}\right)=e_{3} e_{1}\left(\frac{\partial f}{\partial \overline{z_{2}}}-\frac{\partial f}{\partial z_{2}}\right) .
$$

Then,

$$
\frac{\partial f}{\partial z_{1}}=-e_{2} \frac{\partial f}{\partial z_{2}} \quad \text { and } \quad \frac{\partial f}{\partial z_{1}}+e_{2} \frac{\partial f}{\partial z_{2}}=0
$$

Thus, we obtain

$$
D^{*} f=0 .
$$

Conversely, we obtain the result clearly because the above conditions are equivalent. Similarly in cases of the 2nd-regular functions and the 3 rd-regular functions, we can obatin the results.

References

[1] H. S. Jung and K. H. Shon, Properties of hyperholomorphic functions on dual ternary numbers, J. Korean Soc. Math. Educ. Ser. B, Pure Appl. Math., 20 (2013), 129-136.
[2] H. S. Jung, S. J. Ha, K. H. Lee, S. M. Lim and K. H. Shon, Structures of hyperholomorphic functions on dual quaternion numbers, Honam Math. J., 35 (2013), 809-817.
[3] H. U. Kang, S. Jung and K. H. Shon, Regular functions for different kinds of conjugations in the the bicomplex number field, East Asian Math. J., 32 No. 5, (2016), 641-649.
[4] J. E. Kim and K. H. Shon, The regularity of functions on dual split quaternions in Clifford analysis, Abstr. Appl. Anal., Art. ID 369430 (2014), 8 pages.
[5] J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr. Appl. Anal., Art. ID 136120 (2013), 7 pages.
[6] J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal., Art. ID 654798 (2014), 8 pages.
[7] S. J. Lim and K. H. Shon, Split hyperholomorphic function in Cliiford analysis, J. Korea Soc. Math. Ser. B, Pure Appl. Math., 22 (2015), 57-63.
[8] M. E. Luna-Elizarrarás and M. Shapiro, A survey on the (hyper-) derivatives in complex, quaternionic and Clifford analysis, Milan J. of Math., 79 (2011), 521-542.
[9] M. E. Luna-Elizarrarás and M. Shapiro, Bicomplex Numbers and their Elementary Functions, CUBO A Mathematical J., 14 (2012), 61-80.
[10] M. Naser, Hyperholomorphic functions, Siberian Math., 12 (1971), 959-968.
[11] D. Rochon and M. Shapiro, On Algebraic Properties of Bicomplex and Hyperbolic Numbers, Anal. Univ. Oradea, (2004), 28 pages.

Han Ul Kang
Department of Mathematics, Pusan National University, Busan 46241, Korea.
E-mail: hukang@pusan.ac.kr
Min Ji Kim
Department of Mathematics, Pusan National University, Busan 46241, Korea.
E-mail: min-jikim@pusan.ac.kr
Kwang Ho Shon
Department of Mathematics, Pusan National University, Busan 46241, Korea.

E-mail: khshon@pusan.ac.kr

