• 제목/요약/키워드: Ricci *-tensor

검색결과 146건 처리시간 0.028초

SASAKIAN STATISTICAL MANIFOLDS WITH QSM-CONNECTION AND THEIR SUBMANIFOLDS

  • Sema Kazan
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.471-490
    • /
    • 2023
  • In this present paper, we study QSM-connection (quarter-symmetric metric connection) on Sasakian statistical manifolds. Firstly, we express the relation between the QSM-connection ${\tilde{\nabla}}$ and the torsion-free connection ∇ and obtain the relation between the curvature tensors ${\tilde{R}}$ of ${\tilde{\nabla}}$ and R of ∇. After then we obtain these relations for ${\tilde{\nabla}}$ and the dual connection ∇* of ∇. Also, we give the relations between the curvature tensor ${\tilde{R}}$ of QSM-connection ${\tilde{\nabla}}$ and the curvature tensors R and R* of the connections ∇ and ∇* on Sasakian statistical manifolds. We obtain the relations between the Ricci tensor of QSM-connection ${\tilde{\nabla}}$ and the Ricci tensors of the connections ∇ and ∇*. After these, we construct an example of a 3-dimensional Sasakian manifold admitting the QSM-connection in order to verify our results. Finally, we study the submanifolds with the induced connection with respect to QSM-connection of statistical manifolds.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

DEFORMATION OF CARTAN CURVATURE ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Shahi, Alireza;Ahmadi, Mohamad Yar
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2119-2139
    • /
    • 2017
  • Here, certain Ricci flow for Finsler n-manifolds is considered and deformation of Cartan hh-curvature, as well as Ricci tensor and scalar curvature, are derived for spaces of scalar flag curvature. As an application, it is shown that on a family of Finsler manifolds of constant flag curvature, the scalar curvature satisfies the so-called heat-type equation. Hence on a compact Finsler manifold of constant flag curvature of initial non-negative scalar curvature, the scalar curvature remains non-negative by Ricci flow and blows up in a short time.

PSEUDO SYMMETRIC AND PSEUDO RICCI SYMMETRIC WARPED PRODUCT MANIFOLDS

  • De, Uday Chand;Murathan, Cengizhan;Ozgur, Cihan
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.615-621
    • /
    • 2010
  • We study pseudo symmetric (briefly $(PS)_n$) and pseudo Ricci symmetric (briefly $(PRS)_n$) warped product manifolds $M{\times}_FN$. If M is $(PS)_n$, then we give a condition on the warping function that M is a pseudosymmetric space and N is a space of constant curvature. If M is $(PRS)_n$, then we show that (i) N is Ricci symmetric and (ii) M is $(PRS)_n$ if and only if the tensor T defined by (2.6) satisfies a certain condition.

REAL HYPERSURFACES SATISFYING ${\nabla}_{\xi}S$ = 0 OF A COMPLEX SPACE FORM

  • Kang, Eun-Hee;Ki, U-Hang
    • 대한수학회보
    • /
    • 제35권4호
    • /
    • pp.819-835
    • /
    • 1998
  • The main purpose of this paper is to prove that if a real hypersurfaces M of a complex space form satisfies ${\nabla}_{\xi}S$=0 and $S{\xi}=\sigma\xi$ for some constant on $\sigma$ on M, then the structure vector field $\xi$ is principal, where S denotes the Ricci tensors of M.

  • PDF

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE

  • Lee, Soo-Young
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.75-85
    • /
    • 2018
  • In this paper, we study nonconstant warping functions on an Einstein warped product manifold $M=B{\times}_{f^2}F$ with a warped product metric $g=g_B+f(t)^2g_F$. And we consider a 2-dimensional base manifold B with a metric $g_B=dt^2+(f^{\prime}(t))^2du^2$. As a result, we prove the following: if M is an Einstein warped product manifold with a 2-dimensional base, then there exist generally nonconstant warping functions f(t).

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN LORENTZIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Choi, Eun-Hee;Lee, Soo-Young
    • 호남수학학술지
    • /
    • 제40권3호
    • /
    • pp.447-456
    • /
    • 2018
  • In this paper, we consider nonconstant warping functions on Einstein Lorentzian warped product manifolds $M=B{\times}_{f^2}F$ with an 1-dimensional base B which has a negative definite metric. As the results, we discuss that on M the resulting Einstein Lorentzian warped product metric is a future (or past) geodesically complete one outside a compact set.

SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS AS CRITICAL POINTS FOR QUADRATIC CURVATURE FUNCTIONALS

  • Huang, Guangyue;Ma, Bingqing;Yang, Jie
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1367-1382
    • /
    • 2020
  • We study rigidity results for the Einstein metrics as the critical points of a family of known quadratic curvature functionals involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor, characterized by some pointwise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moreover, we also provide a few rigidity results for locally conformally flat critical metrics.

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK;TRIPATHI MUKUT MANI;CHOI, JAE-DONG
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.713-724
    • /
    • 2005
  • We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.