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SASAKIAN STATISTICAL MANIFOLDS WITH

QSM-CONNECTION AND THEIR SUBMANIFOLDS

Sema Kazan∗

Abstract. In this present paper, we study QSM-connection (quarter-
symmetric metric connection) on Sasakian statistical manifolds. Firstly,

we express the relation between the QSM-connection ∇̃ and the torsion-
free connection ∇ and obtain the relation between the curvature tensors

R̃ of ∇̃ and R of ∇. After then we obtain these relations for ∇̃ and

the dual connection ∇∗ of ∇. Also, we give the relations between the
curvature tensor R̃ of QSM-connection ∇̃ and the curvature tensors R

and R∗ of the connections ∇ and ∇∗ on Sasakian statistical manifolds.

We obtain the relations between the Ricci tensor of QSM-connection ∇̃
and the Ricci tensors of the connections ∇ and ∇∗. After these, we con-

struct an example of a 3-dimensional Sasakian manifold admitting the

QSM-connection in order to verify our results. Finally, we study the sub-
manifolds with the induced connection with respect to QSM-connection

of statistical manifolds.

1. Introduction

Statistical manifolds are Riemannian manifolds whose each point can be
identified with a probability density with respect to a given measure. In 1945,
the theory of these manifolds has started with a paper of Rao [26]. We know
that statistical manifolds theory is information geometry. The information
geometry typically deals with the study of various geometric structures on a
statistical manifold, has begun as a study of the geometric structures possessed
by a statistical model of probability distributions. As it is known, information
geometry has many fields of study, for example; information theory, stochas-
tic processes, dynamical systems and time series, statistical physics, quantum
systems and the mathematical theory of neural networks ([8], [3]).

Amari has first introduced the notion of dual connection (or conjugate con-
nection) in affine geometry [2]. A statistical model equipped with a Riemann-
ian metric together with a pair of dual affine connections is called a statistical
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manifold. For more information about statistical manifolds and information
geometry, we refer to [10], [29], [22], [5], [24], [18], [19], [21] and etc.

On the other hand, if Φ is a tensor field of type (1, 1), η is a 1-form and ξ is
a vector field on a (2n+1)-dimensional differentiable manifold M , then almost
contact structure (Φ, η, ξ) which is related to almost complex structures and
satisfies the conditions Φ2X = −I + η ⊗ ξ, η(ξ) = 1 has been determined by
Sasaki in 1960 [27]. In addition to this definition, different types of manifolds
such as Sasakian manifold, Kenmotsu manifold, trans-Sasakian manifold and
etc. have been defined and studied by many mathematicians [25], [20], [27] and
etc.

Considering these notions, the differential geometry of statistical manifolds
are being studied by geometers by adding different geometric structures to
these manifolds. For instance, in [30] quaternionic Kähler-like statistical mani-
fold have been studied and the authors have introduced the notion of Sasakian
statistical structure and obtained the condition for a real hypersurface in a
holomorphic statistical manifold to admit such a structure in [11]. In [16],
the author has studied conformally-projectively flat trans-Sasakian statistical
manifolds. Also in [12], the notion of a Kenmotsu statistical manifold is intro-
duced and they have showed that, a Kenmotsu statistical manifold of constant
Φ-sectional curvature is constructed from a special Kähler manifold, which is
an important example of holomorphic statistical manifold. The projection of
a dualistic structure has been defined on a twisted product manifold induces
dualistic structures on the base and the fiber manifolds, and conversely in [8].
Also, the authors Kazan and Kazan have examined Sasakian statistical mani-
folds with semi-symmetric metric connection in [17].

In this paper, we aim to give the notion of QSM-connection ∇̃ on Sasakian
statistical manifolds and obtain the relations between the curvature tensor R̃
of QSM-connection ∇̃ and the curvature tensors R and R∗ of the connections
∇ and ∇∗ on Sasakian statistical manifolds, respectively. Moreover, we give
the relations between the Ricci tensor of QSM-connection ∇̃ and the Ricci
tensors of the connections ∇ and ∇∗, respectively. At the end of this, we
construct an example of a 3-dimensional Sasakian manifold admitting theQSM-
connection in order to verify our results. Finally, we study the submanifolds of
this manifold.

Thus, let us give some basic notions about statistical manifolds which will
be useful for us in the next sections. Throughout the paper we denote the
notion of quarter-symmetric metric connection as QSM-connection.

We assume that M is a (2n + 1)-dimensional manifold, g is a Riemannian

metric, ∇̂ is the Levi-Civita connection associated with g and Γ(TM (p,q)) means
the set of tensor fields of type (p, q) on M .

A pair (∇, g) is called a statistical structure on M , if ∇ is torsion-free and

(1) (∇Xg)(Y,Z) = (∇Y g)(X,Z), ∀X,Y, Z ∈ Γ(TM)
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holds, where the equation (1) is generally called Codazzi equation. In this case,
(M,∇, g) is called a statistical manifold.

Let (∇, g) be a statistical structure on M . Then the connection ∇∗ which
is defined by

(2) Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ)

is called conjugate or dual connection of ∇ with respect to g. If (∇, g) is a
statistical structure on M , then (∇∗, g) is a statistical structure on M , too.

For a statistical structure (∇, g), one can define the difference tensor field
K ∈ Γ(TM (1,2)) as

(3) K(X,Y ) = ∇XY − ∇̂XY, ∀X,Y ∈ Γ(TM),

where K satisfies

K(X,Y ) = K(Y,X),(4)

g(K(X,Y ), Z) = g(Y,K(X,Z)).(5)

Furthermore, we have

(6) K = ∇̂ − ∇∗ =
1

2
(∇−∇∗).

For more detailed study, we refer to [10], [11] and [32].

On the other hand in [15], Hayden introduced a metric connection with
a non-zero torsion on a Riemannian manifold and this connection is called a
Hayden connection. In [13], the author has introduced the quarter-symmetric

linear connection in a differentiable manifold. A linear connection ∇̃ on an
n-dimensional Riemannian manifold (M, g) is called a quarter-symmetric con-

nection if its torsion tensor T is of the connection ∇̃

(7) T (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ],

satisfies

(8) T (X,Y ) = η(Y )ϕX − η(X)ϕY,

where X, Y ∈ χ(M) and η is a 1-form, ϕ is a (1,1)-tensor field. Also, a

quarter-symmetric connection ∇̃ is called a quarter-symmetric metric connec-
tion (QSM-connection) if it further satisfies ∇̃g = 0.

2. QSM-Connection On Statistical Manifolds

In this section, first we define the notion of statistical manifold admitting
a QSM-connection. After that we obtain the relation between the curvature
tensor R̃ of the QSM-connection ∇̃ with the curvature tensor R of the affine
connection ∇.
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Let M be a Riemannian manifold. A linear connection ∇̃ in M is said to
be quarter symmetric connection [13] if the torsion tensor T of the connection

∇̃, for ∀X,Y ∈ Γ(TM), satisfies

(9) T (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ] = η(Y )ϕX − η(X)ϕY,

where η is a 1-form and ϕ is a (1, 1) tensor field. A linear connection ∇̃ is called
a metric connection with respect to a Riemannian metric g of M if and only if

(10) (∇̃Xg)(Y, Z) = 0

where X,Y, Z ∈ χ(M) are arbitrary vector fields on M . Then, a linear connec-

tion ∇̃ satisfying (9) and (10) is called a QSM-connection [13].

Definition 2.1. Let (M,∇, g) be a statistical manifold and let U be a

vector field on M. For any X,Y ∈ Γ(TM), the linear connection ∇̃ on M is
defined by

(11) ∇̃XY = ∇XY − w(X)ϕY −K(X,Y ),

where g(X,U) = w(X). Then, (M, ∇̃, g) is called a statistical manifold admit-
ting a QSM-connection.

Taking (6) in (11), we get

(12) ∇̃XY = ∇∗
XY − w(X)ϕY +K(X,Y ),

for any X,Y ∈ Γ(TM).

Now, we can examine the curvature tensor of a statistical manifold admitting
a QSM-connection in the following proposition:

Proposition 2.2. Let (M, ∇̃, g) be a statistical manifold admitting a QSM-

connection. Then the relations between the curvature tensor R̃ of QSM-
connection ∇̃ with the curvature tensors R and R∗ of the connections ∇ and
∇∗ are given by

R̃(X,Y )Z = R(X,Y )Z + w(X)(∇Y ϕ)Z − w(Y )(∇Xϕ)Z

+ ϕZ

{
w(X)w(ϕY )− w(Y )w(ϕX)− g(Y,∇XU −K(X,U))
+g(X,∇Y U −K(Y,U)) + g(w(X)Y − w(Y )X,ϕU)

}
+K(w(Y )X − w(X)Y, ϕZ)− (∇XK)(Y,Z) + (∇Y K)(X,Z)

+ w(X)ϕ(K(Y,Z))− w(Y )ϕ(K(X,Z)) +K(X,K(Y, Z))−K(Y,K(X,Z))

(13)
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and

R̃(X,Y )Z = R∗(X,Y )Z + w(X)(∇∗
Y ϕ)Z − w(Y )(∇∗

Xϕ)Z

+ ϕZ

{
w(X)w(ϕY )− w(Y )w(ϕX)− g(Y,∇∗

XU −K(X,U))
+g(X,∇∗

Y U −K(Y, U)) + g(w(X)Y − w(Y )X,ϕU)

}
+K(w(Y )X − w(X)Y, ϕZ)− (∇∗

XK)(Y, Z) + (∇∗
Y K)(X,Z)

+ w(X)ϕ(K(Y,Z))− w(Y )ϕ(K(X,Z)) +K(X,K(Y,Z))−K(Y,K(X,Z))

(14)

for all vector fields X, Y and Z on M.

Proof. It is known that the Riemannian curvature tensor R of M with
respect to the torsion-free connection ∇ is defined by R(X,Y )Z = ∇X∇Y Z −
∇Y ∇XZ−∇[X,Y ]Z. Then, from (11), we can define the Riemannian curvature

tensor R̃ of M with respect to the QSM-connection ∇̃ by

(15) R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,

where ∀X,Y, Z ∈ Γ(TM). Here, using (11), we have

∇̃X∇̃Y Z = ∇X∇Y Z − w(X)ϕ(∇Y Z)−K(X,∇Y Z)

+ g(∇XY, U)ϕZ + w(X)g(ϕY,U)ϕZ + g(K(X,Y ), U)ϕZ

− g(Y,∇XU)ϕZ + w(X)g(Y, ϕU)ϕZ + g(Y,K(X,U))ϕZ

− w(Y )∇XϕZ + w(Y )w(X)ϕ2Z + w(Y )K(X,ϕZ)

−∇XK(Y,Z) + w(X)ϕ(K(Y,Z)) +K(X,K(Y, Z)).(16)

Similarly, we can find ∇̃Y ∇̃XZ. Also, we get
(17)

∇̃[X,Y ]Z = ∇[X,Y ]Z−w(∇XY )ϕZ+w(∇Y X)ϕZ−K(∇XY,Z)+K(∇Y X,Z).

Then, using (16) and (17) in (15), we obtain (13).

On the other hand, we know that R∗ is the Riemannian curvature tensor of
M with respect to the dual connection ∇∗ which is defined by R∗(X,Y )Z =
∇∗

X∇∗
Y Z −∇∗

Y ∇∗
XZ −∇∗

[X,Y ]Z. Thus, we obtain (14).

Proposition 2.3. Let (M, ∇̃, g) be a statistical manifold admitting a QSM-

connection. Then the curvature tensor R̃ associated with ∇̃ satisfies the fol-
lowing conditions for ∀X,Y, Z ∈ Γ(TM), V ∈ Γ(TM⊥),

i) R̃(X,Y )Z = −R̃(Y,X)Z,
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ii) R̃(X,Y )Z + R̃(Y,Z)X + R̃(Z,X)Y =

w(X)(∇Y ϕ)Z − w(Y )(∇Xϕ)Z + w(Y )(∇Zϕ)X

− w(Z)(∇Y ϕ)X + w(Z)(∇Xϕ)Y − w(X)(∇Zϕ)Y

+ ϕZ

{
w(X)w(ϕY )− w(Y )w(ϕX)− g(Y,∇XU −K(X,U))
+g(X,∇Y U −K(Y, U)) + g(w(X)Y − w(Y )X,ϕU)

}
+ ϕX

{
w(Y )w(ϕZ)− w(Z)w(ϕY )− g(Z,∇Y U −K(Y,U))
+g(Y,∇ZU −K(Z,U)) + g(w(Y )Z − w(Z)Y, ϕU)

}
+ ϕY

{
w(Z)w(ϕX)− w(X)w(ϕZ)− g(X,∇ZU −K(Z,U))
+g(Z,∇XU −K(X,U)) + g(w(Z)X − w(X)Z, ϕU)

}
+K(w(Y )X − w(X)Y, ϕZ) +K(w(Z)Y − w(Y )Z, ϕX)

+K(w(X)Z − w(Z)X,ϕY ),

iii) g(R̃(X,Y )Z, V ) = g(Z, R̃(X,Y )V ) if and only if

g(Z, (∇XK)(Y, V )) + g(Z, (∇Y K)(X,V ))− g((∇XK)(Y, Z), V ) + g((∇Y K)(X,Z), V )

+ w(X) {g((∇Y ϕ)Z, V ) + g((∇Y ϕ)V,Z) + g(ϕ(K(Y, Z)), V ) + g(ϕ(K(Y, V )), Z)}
− w(Y ) {g((∇Xϕ)Z, V ) + g((∇Xϕ)V,Z) + g(ϕ(K(X,Z)), V ) + g(ϕ(K(X,V )), Z)}

+ [g(ϕZ, V ) + g(ϕV,Z)]

{
w(X)w(ϕY )− w(Y )w(ϕX)− g(Y,∇XU −K(X,U))
+g(X,∇Y U −K(Y,U)) + g(w(X)Y − w(Y )X,ϕU)

}
+ 3 {g(K(Y,K(X,V )), Z)− g(K(X,K(Y, V )), Z)}
+ g(K(X,K(Y, Z)), V )− g(K(Y,K(X,Z)), V )

= 0.

Proof. Using (11) and (13) and by long calculations, one can see that (i)-
(ii)-(iii) hold.

3. QSM-Connection On Sasakian Statistical Manifolds

A (2n+1)-dimensional differentiable manifold M is said to admit an almost
contact Riemannian structure (ϕ, η, ξ, g), where ϕ is a (1,1)-tensor field, ξ is a
vector field, η is a 1-form and g is a Riemannian metric on M such that

ϕξ = 0, η(ξ) = 1,

g(ξ,X) = η(X), ϕ2X = −X + η(X)ξ,(18)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fieldsX, Y onM . In addition, if (ϕ, η, ξ, g) satisfies the equations

dη = 0, ∇̂Xξ = ϕX,(19)

(∇̂Xϕ)Y = η(Y )X − g(X,Y )ξ,(20)
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then M is called a Sasakian manifold (for detail, see [6] and [11]).
Also in [11], the authors have defined the notion of Sasakian statistical struc-

ture and have obtained the necessary and sufficient conditions for a statistical
structure on an almost contact metric manifold to be a Sasakian statistical
structure as follows:

Definition 3.1. A quadruple (∇, g, ϕ, ξ) is called a Sasakian statistical
structure onM if (∇, g) is a statistical structure, (g, ϕ, ξ) is a Sasakian structure
on M and the formula K(X,ϕY ) + ϕK(X,Y ) = 0 holds for any vector fields
X and Y on M [11].

Theorem 3.2. Let (∇, g) be a statistical structure and let (g, ϕ, ξ) be an
almost contact metric structure onM . Then (∇, g, ϕ, ξ) is a Sasakian statistical
structure if and only if the following formulas hold [11]:

(21) ∇XϕY − ϕ∇∗
XY = g(Y, ξ)X − g(Y,X)ξ,

(22) ∇Xξ = ϕX + g(∇Xξ, ξ)ξ.

Here, we can give the following results for Sasakian statistical manifolds:

Remark 3.3. Let (M,∇, g, ϕ, η, ξ) be a (2n+1)-dimensional Sasakian sta-
tistical manifold. Then, from [11], we have the following statements:

(∇Xϕ)Y = η(Y )X − g(X,Y )ξ + 2K(X,ϕY ),(23)

(∇∗
Xϕ)Y = η(Y )X − g(X,Y )ξ − 2K(X,ϕY ),(24)

∇Xξ = ϕX + η(∇Xξ)ξ,(25)

∇∗
Xξ = ϕX + η(∇∗

Xξ)ξ,(26)

for any X,Y ∈ Γ(TM).

Corollary 3.4. Let (M,∇, g, ϕ, η, ξ) be a (2n + 1)-dimensional Sasakian
statistical manifold. Then, from Remark 3.3, we have

(27)

{
K(X, ξ) = ∇Xξ − ϕX = η(∇Xξ)ξ,
K(X, ξ) = ϕX −∇∗

Xξ = η(∇∗
Xξ)ξ,

for any X ∈ Γ(TM),

With reference [23], we define QSM-connection ∇̃ for the connections ∇ and
∇∗ on Sasakian statistical manifolds:

Definition 3.5. Let (M,∇,∇∗, g, ϕ, η, ξ) be a (2n+1)-dimensional Sasakian
statistical manifold. Then, M is called Sasakian statistical manifold with QSM-
connection ∇̃, if the following equation holds:

(28) ∇̃XY = ∇XY − η(X)ϕY −K(X,Y ).
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The equation (28) can also be written for dual connection, as follows:

(29) ∇̃XY = ∇∗
XY − η(X)ϕY +K(X,Y ),

for any X,Y ∈ Γ(TM) and η is a 1-form.
Now, using (28), (29) and Proposition 2.2, we give the relations between

the curvature tensor R̃ of QSM-connection ∇̃ and the curvature tensors R and
R∗ of the connections ∇ and ∇∗ on Sasakian statistical manifolds.

Theorem 3.6. Let (M, ∇̃, g, ϕ, η, ξ) be a (2n + 1)-dimensional Sasakian

statistical manifold. Then the relations between the curvature tensor R̃ of
QSM-connection ∇̃ and the curvature tensors R and R∗ of the connections ∇
and ∇∗ are

R̃(X,Y )Z = R(X,Y )Z + 2g(X,ϕY )ϕZ − η(X)g(Y,Z)ξ

+ η(Y )g(X,Z)ξ + {η(X)Y − η(Y )X} η(Z)(30)

− (∇XK)(Y,Z) + (∇Y K)(X,Z) +K(X,K(Y,Z))−K(Y,K(X,Z))

and

R̃(X,Y )Z = R∗(X,Y )Z + 2g(X,ϕY )ϕZ − η(X)g(Y,Z)ξ

+ η(Y )g(X,Z)ξ + {η(X)Y − η(Y )X} η(Z)(31)

+ (∇∗
XK)(Y,Z)− (∇∗

Y K)(X,Z) +K(X,K(Y,Z))−K(Y,K(X,Z)),

for all vector fields X, Y and Z on M .

Proof. Using the equations (13) and (14), the theorem is proved.

Corollary 3.7. Let (M, ∇̃, g, ϕ, η, ξ) be a (2n + 1)-dimensional Sasakian
statistical manifold. Then we have

R̃(X,Y )ξ = R(X,Y )ξ + η(X)Y − η(Y )X − (∇XK)(Y, ξ) + (∇Y K)(X, ξ)

(32)

= R∗(X,Y )ξ + η(X)Y − η(Y )X + (∇∗
XK)(Y, ξ)− (∇∗

Y K)(X, ξ)(33)

and

R̃(ξ,X)Y = R(ξ,X)Y − g(X,Y )ξ + η(Y )X − (∇ξK)(X,Y ) + (∇XK)(ξ, Y )

+K(ξ,K(X,Y ))−K(X,K(ξ, Y ))(34)

= R∗(ξ,X)Y − g(X,Y )ξ + η(Y )X − (∇∗
ξK)(X,Y ) + (∇∗

XK)(ξ, Y )

+K(ξ,K(X,Y ))−K(X,K(ξ, Y )),(35)

for all vector fields X and Y on M .

Proof. From (27), we have K(X,K(Y, ξ)) = η(∇Xξ)η(∇Y ξ)ξ and so, we
obtain that

(36) K(X,K(Y, ξ)) = K(Y,K(X, ξ)).

Then, using (25), (26) and (27) in (30) and (31), we reach the equations (32)-
(35) and the proof completes.
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Now, we give the relations between the Ricci tensor R̃ic of QSM-connection
∇̃ and the Ricci tensors Ric and Ric∗ of the connections ∇ and ∇∗.

Theorem 3.8. Let (M, ∇̃, g, ϕ, η, ξ) be a (2n + 1)-dimensional Sasakian
statistical manifold. Then, the relations between the Ricci tensors of QSM-
connection ∇̃ and the connections ∇ and ∇∗ are

R̃ic(X,Y ) = Ric(X,Y ) + g(ϕX, ϕY )− (2n)η(X)η(Y )(37)

−
2n+1∑
i=1

g((∇eiK)(X,Y )− (∇XK)(ei, Y )

−K(ei,K(X,Y )) +K(X,K(ei, Y )), ei)

and

R̃ic(X,Y ) = Ric∗(X,Y ) + g(ϕX, ϕY )− (2n)η(X)η(Y )(38)

+

2n+1∑
i=1

g((∇∗
eiK)(X,Y )− (∇∗

XK)(ei, Y )

+K(ei,K(X,Y ))−K(X,K(ei, Y )), ei),

for all vector fields X and Y on M .

Proof. Using (18) and (30), we get (37). Similarly, using (18) and (31), we
get (38). Then, the proof is completed.

Now, we give a result from Theorem 3.8:

Corollary 3.9. Let (M, ∇̃, g, ϕ, η, ξ) be a (2n + 1)-dimensional Sasakian
statistical manifold. If we get the ϕ−basis {e1, e2, ..., en, ϕe1, ϕe2, ..., ϕen, ξ} ,
then we obtain

R̃ic(X,Y ) = Ric(X,Y ) + g(ϕX, ϕY )− (2n)η(X)η(Y )

+

n∑
i=1

 g((∇XK)(ei, Y ), ei)− g((∇eiK)(X,Y ), ei) + g((∇XK)(ϕei, Y ), ϕei)
+g((∇ϕeiK)(X,Y ), ϕei) + g(K(ei,K(X,Y )), ei)− g(K(X,K(ei, Y )), ei)

+g(K(ϕei,K(X,Y )), ϕei)− g(K(X,K(ϕei, Y )), ϕei)


+ g((∇XK)(ξ, Y ), ξ)− g((∇ξK)(X,Y ), ξ) + g(K(ξ,K(X,Y )), ξ)

(39)

− g(K(X,K(ξ, Y )), ξ)
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and

R̃ic(X,Y ) = Ric∗(X,Y ) + g(ϕX, ϕY )− (2n)η(X)η(Y )

+

n∑
i=1


g((∇∗

eiK)(X,Y ), ei)− g((∇∗
XK)(ei, Y ), ei) + g((∇∗

ϕei
K)(X,Y ), ϕei)

−g((∇∗
XK)(ϕei, Y ), ϕei) + g(K(ei,K(X,Y )), ei)− g(K(X,K(ei, Y )), ei)

+g(K(ϕei,K(X,Y )), ϕei)− g(K(X,K(ϕei, Y )), ϕei)


− g((∇XK)(ξ, Y ), ξ) + g((∇ξK)(X,Y ), ξ) + g(K(ξ,K(X,Y )), ξ)

(40)

− g(K(X,K(ξ, Y )), ξ)

for all vector fields X and Y on M .

Now, let us construct an example of a 3-dimensional Sasakian manifold
admitting the QSM-connection in order to verify our results.

Example 3.10. We consider the 3-dimensional manifold M = {(x, y, z) ∈
R3, z ̸= 0}, where (x, y, z) are the standard coordinates in R3.

We choose the vector fields {e1, e2, e3} as

(41) e1 =
∂

∂x
, e2 = −x

(
∂

∂x
− ∂

∂z

)
+

∂

∂y
, e3 =

1

2

∂

∂z
,

which are linearly independent at each point of M .
Let g be the Riemannian metric defined by g(ei, ej) = 0, i ̸= j, i, j = 1, 2, 3

and g(ek, ek) = 1, k = 1, 2, 3.
Let η be the 1-form defined by η(Z) = g(Z, e3), for any Z ∈ χ(M), where

χ(M) is the set of all differentiable vector fields on M .
Let ϕ be the (1, 1)-tensor field defined by

(42) ϕe1 = −e2, ϕe2 = e1, ϕe3 = 0.

Using the linearity of ϕ and g, we have η(e3) = 1, ϕ2Z = −Z + η(Z)e3 and
g(ϕZ, ϕU) = g(Z,U) − η(Z)η(U), for any U,Z ∈ χ(M). Thus, for e3 = ξ,
(ϕ, ξ, η, g) defines an almost contact metric structure on M .

Now, we have

(43) [e1, e2] = −e1 + 2e3, [e1, e3] = 0, [e2, e3] = 0.

The Levi-Civita connection ∇̂ of the metric tensor g is given by Koszul’s
formula which is defined as

2g(∇̂XY,Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Taking e3 = ξ and using Koszul’s formula, we get the following

∇̂e1e1 = e2, ∇̂e1e2 = −e1 + e3, ∇̂e1e3 = −e2,

∇̂e2e1 = −e3, ∇̂e2e2 = 0, ∇̂e2e3 = e1,(44)

∇̂e3e1 = −e2, ∇̂e3e2 = e1, ∇̂e3e3 = 0.
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By using above values, it can be easily seen that (ϕ, ξ, η, g) is a Sasakian
structure on M. Consequently, (M,ϕ, ξ, η, g) is a 3-dimensional Sasakian man-
ifold [7].

Now, the components of the curvature tensor, the Ricci tensor and scalar
curvature with respect to the Levi-Civita connection ∇̂ are obtained as

R̂(e1, e2)e1 = 4e2, R̂(e1, e2)e2 = −4e1, R̂(e1, e2)e3 = 0,

R̂(e1, e3)e1 = −e3, R̂(e1, e3)e2 = 0, R̂(e1, e3)e3 = e1,(45)

R̂(e2, e3)e1 = 0, R̂(e2, e3)e2 = −e3, R̂(e2, e3)e3 = e2,

R̂ic(e1, e1) = −3, R̂ic(e1, e2) = 0, R̂ic(e1, e3) = 0,

R̂ic(e2, e1) = 0, R̂ic(e2, e2) = −3, R̂ic(e2, e3) = 0,(46)

R̂ic(e3, e1) = 0, R̂ic(e3, e2) = 0, R̂ic(e3, e3) = 2

and

(47) τ̂ = −4,

respectively.

From (3) and (44), we have

∇e1e1 = e2 +K(e1, e1), ∇e1e2 = −e1 + e3 +K(e1, e2), ∇e1e3 = −e2 +K(e1, e3),

(48)

∇e2e1 = −e3 +K(e2, e1), ∇e2e2 = K(e2, e2), ∇e2e3 = e1 +K(e2, e3),

∇e3e1 = −e2 +K(e3, e1), ∇e3e2 = e1 +K(e3, e2), ∇e3e3 = K(e3, e3).

So, the components of the curvature tensor, the Ricci tensor and scalar
curvature with respect to the torsion-free connection ∇ are obtained as

R(e1, e2)e1 = 4e2 +K(e1, e1)− 3K(e1, e3)−K(e2, e2) +∇e1K(e2, e1)−∇e2K(e1, e1),

(49)

R(e1, e2)e2 = −4e1 + 2K(e1, e2)− 3K(e2, e3) +∇e1K(e2, e2)−∇e2K(e1, e2),

R(e1, e2)e3 = K(e1, e1) +K(e1, e3) +K(e2, e2)− 2K(e3, e3) +∇e1K(e2, e3)−∇e2K(e1, e3),

R(e1, e3)e1 = −e3 −K(e1, e2)−K(e2, e3) +∇e1K(e3, e1)−∇e3K(e1, e1),

R(e1, e3)e2 = K(e1, e1) +K(e1, e3)−K(e3, e3) +∇e1K(e3, e2)−∇e3K(e1, e2),

R(e1, e3)e3 = e1 +K(e2, e3) +∇e1K(e3, e3)−∇e3K(e1, e3),

R(e2, e3)e1 = −K(e2, e2) +K(e3, e3) +∇e2K(e3, e1)−∇e3K(e2, e1),

R(e2, e3)e2 = −e3 +K(e2, e1) +∇e2K(e3, e2)−∇e3K(e2, e2),

R(e2, e3)e3 = e2 −K(e3, e1) +∇e2K(e3, e3)−∇e3K(e2, e3),



482 Sema Kazan

Ric(e1, e1) = −3− g(K(e1, e1), e2) + 3g(K(e1, e3), e2) + g(K(e2, e2), e2)

(50)

− g(∇e1K(e2, e1), e2) + g(∇e2K(e1, e1), e2) + g(K(e1, e2), e3) + g(K(e3, e2), e3)

− g(∇e1K(e3, e1), e3) + g(∇e3K(e1, e1), e3),

Ric(e1, e2) = −2g(K(e1, e2), e2) + 3g(K(e2, e3), e2)− g(∇e1K(e2, e2), e2)

+ g(∇e2K(e1, e2), e2)− g(K(e1, e1), e3) + g(K(e3, e3), e3)− g(K(e3, e1), e3)

− g(∇e1K(e3, e2), e3)− g(∇e3K(e1, e2), e3),

Ric(e1, e3) = −g(K(e1, e1), e2)− g(K(e2, e2), e2) + 2g(K(e3, e3), e2)− g(K(e1, e3), e2)

− g(∇e1K(e2, e3), e2) + g(∇e2K(e1, e3), e2)− g(K(e3, e2), e3)

− g(∇e1K(e3, e3), e3) + g(∇e3K(e1, e3), e3),

Ric(e2, e1) = g(K(e1, e1), e1)− 3g(K(e1, e3), e1)− g(K(e2, e2), e1)

+ g(∇e1K(e2, e1), e1)− g(∇e2K(e1, e1), e1) + g(K(e2, e2), e3)

− g(K(e3, e3), e3)− g(∇e2K(e3, e1), e3)− g(∇e3K(e2, e1), e3),

Ric(e2, e2) = −3 + g(K(e1, e2), e1) + g(K(e2, e1), e1)− 3g(K(e2, e3), e1)

+ g(∇e1K(e2, e2), e1)− g(∇e2K(e1, e2), e1)− g(K(e2, e1), e3)

− g(∇e2K(e3, e2), e3) + g(∇e3K(e2, e2), e3),

Ric(e2, e3) = g(K(e1, e1), e1) + g(K(e2, e2), e1)− 2g(K(e3, e3), e1) + g(K(e1, e3), e1)

+ g(∇e1K(e2, e3), e1)− g(∇e2K(e1, e3), e1) + g(K(e3, e1), e3)

+ g(∇e2K(e3, e3), e3)− g(∇e3K(e2, e3), e3),

Ric(e3, e1) = −g(K(e1, e2), e1)− g(K(e3, e2), e1) + g(∇e1K(e3, e1), e1)− g(∇e3K(e1, e1), e1)

− g(K(e2, e2), e2) + g(K(e3, e3), e2) + g(∇e2K(e3, e1), e2)− g(∇e3K(e2, e1), e2),

Ric(e3, e2) = g(K(e1, e1), e1)− g(K(e3, e3), e1) + g(K(e3, e1), e1) + g(∇e1K(e3, e2), e1)

− g(∇e3K(e1, e2), e1) + g(K(e2, e1), e2) + g(∇e2K(e3, e2), e2)− g(∇e3K(e2, e2), e2),

Ric(e3, e3) = 2 + g(K(e3, e2), e1) + g(∇e1K(e3, e3), e1)− g(∇e3K(e1, e3), e1)− g(K(e3, e1), e2)

+ g(∇e2K(e3, e3), e2)− g(∇e3K(e2, e3), e2)

and

τ = −4− g(K(e1, e1), e2) + 2g(K(e1, e3), e2) + g(K(e2, e2), e2) + g(K(e3, e2), e3)

(51)

+ 2g(K(e1, e2), e1)− 2g(K(e3, e2), e1)− g(∇e1K(e2, e1), e2) + g(∇e2K(e1, e1), e2)

− g(∇e1K(e3, e1), e3) + g(∇e3K(e1, e1), e3) + g(∇e1K(e2, e2), e1)− g(∇e2K(e1, e2), e1)

− g(∇e2K(e3, e2), e3) + g(∇e3K(e2, e2), e3) + g(∇e1K(e3, e3), e1)− g(∇e3K(e1, e3), e1)

+ g(∇e2K(e3, e3), e2)− g(∇e3K(e2, e3), e2),

respectively. (Similarly, the above equations can be obtained for the dual con-
nection ∇∗.)
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Finally, from (11) ( for w = η and U = ξ) and (44), we have

∇̃e1e1 = e2, ∇̃e1e2 = −e1 + e3, ∇̃e1e3 = −e2,

∇̃e2e1 = −e3, ∇̃e2e2 = 0, ∇̃e2e3 = e1,(52)

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = 0.

and the curvature tensors, Ricci tensors and scalar curvature with respect to
the QSM-connection ∇̃ are obtained as follows, respectively:

R̃(e1, e2)e1 = 2e2, R̃(e1, e2)e2 = −2e1, R̃(e1, e2)e3 = 0,

R̃(e1, e3)e1 = 0, R̃(e1, e3)e2 = 0, R̃(e1, e3)e3 = 0,(53)

R̃(e2, e3)e1 = 0, R̃(e2, e3)e2 = 0, R̃(e2, e3)e3 = 0,

R̃ic(e1, e1) = −2, R̃ic(e1, e2) = 0, R̃ic(e1, e3) = 0,

R̃ic(e2, e1) = 0, R̃ic(e2, e2) = −2, R̃ic(e2, e3) = 0,(54)

R̃ic(e3, e1) = 0, R̃ic(e3, e2) = 0, R̃ic(e3, e3) = 0

and

(55) τ̃ = −4.

Hence, one can easily see that, from (18), (42), (49) and (53), the equation (30)
in Theorem 3.6 is verified; from (18), (42), (50) and (54), the equation (37)
in Theorem 3.8 is verified. Similarly, obtaining the above equations for dual
connection ∇∗, one can easily see that, the equations (31), (38) and (40) are
verified, too.

Now, by specially choosing the difference tensor field K, we obtain the
equations (48)-(50) in the following Example.

Example 3.11. If we choose the difference tensor field K as K(X,Y ) =
5η(X)η(Y )ξ, then the curvature tensors and Ricci tensors in (49) and (50) are
obtained as

R(e1, e2)e1 = 4e2, R(e1, e2)e2 = −4e1, R(e1, e2)e3 = −10e3,

R(e1, e3)e1 = −e3, R(e1, e3)e2 = −5e3, R(e1, e3)e3 = e1 − 5e2,(56)

R(e2, e3)e1 = 5e3, R(e2, e3)e2 = −e3, R(e2, e3)e3 = e2 + 5e1,

Ric(e1, e1) = −3, Ric(e1, e2) = 5, Ric(e1, e3) = 0,

Ric(e2, e1) = −5, Ric(e2, e2) = −3, Ric(e2, e3) = 0,(57)

Ric(e3, e1) = 0, Ric(e3, e2) = 0, Ric(e3, e3) = 2.

Here, one can easily see that, from (18), (42), (53)-(55) and (56)-(57), the
Theorems 3.6 and 3.8 are verified.
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4. Submanifolds with Induced Connection of Sasakian Statistical
Manifolds

In this section, firstly we obtain the induced connection with respect to
QSM-connection of a statistical manifold. Then we give the Gauss and Wein-
garten formulas for Sasakian statistical manifolds with QSM-connection. So,
considering these formulas and taking into account Definition 3.3 in [4], we
examine some results for submanifolds of Sasakian statistical manifolds with
QSM-connection.

Let (M,∇,∇∗, g) be a statistical manifold and (N,∇N

,∇∗N

, gN ) be a sta-
tistical submanifold of M . From [31], Gauss and Weingarten formulas for
submanifold N is given by

∇XY = ∇N
XY + h(X,Y ),(58)

∇∗
XY = ∇∗N

X Y + h∗(X,Y )(59)

and

∇XV = −A∗
V X +DXV,(60)

∇∗
XV = −AV X +D∗

XV,(61)

for X,Y ∈ Γ(TN) and V ∈ Γ(TN⊥). Here, induced statistical connections ∇N

and ∇∗N

on N are dual. Also, symmetrical and bilinear h and h∗ are called
embedding curvature tensors of N in M for ∇ and ∇∗, respectively. On the
other hand, bilinear AV and A∗

V are related to the embedding curvature tensors
by

(62) g(AV X,Y ) = g(h(X,Y ), V ) and g(A∗
V X,Y ) = g(h∗(X,Y ), V ).

Now, we can give the induced connection with respect to QSM-connection
of the statistical manifold M :

Let (M, ∇̃, g) be a statistical manifold admitting a QSM-connection and let

N be a submanifold of M. Denote ∇′
and h

′
as the induced connection and

the second fundamental form on the submanifold (N,∇N

, gN ) from statistical

manifold M with respect to the QSM-connection ∇̃, respectively. In this case,
for X,Y ∈ Γ(TN), the Gauss formula is expressed as follows:

(63) ∇̃XY = ∇
′

XY + h
′
(X,Y ).

We know that if the second fundamental form h
′
vanishes, then the sub-

manifold N is called totally geodesic. Also, if h
′
(X,Y ) = H

′
g(X,Y ) such that

H
′
is the mean curvature vector with respect to ∇̃, then N is called totally

umbilical.
In following proposition, we give the relations between ∇′

and ∇N

:

Proposition 4.1. Let (N,∇N

, gN ) be a submanifold of statistical manifold

(M, ∇̃, g) such that ∇̃ is a QSM-connection. Then, for X,Y ∈ Γ(TN), we
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obtain

(64) ∇
′

XY = ∇
N

XY − w(X)ϕY −KN (X,Y ),

and

(65) h
′
(X,Y ) =

1

2
(h(X,Y ) + h∗(X,Y )),

where K = 1
2 (∇−∇∗) and for U ∈ Γ(TN), w(X) = g(X,U).

Proof. Let M be a statistical manifold with QSM-connection. Then, using
(6) and (58) in (11), we obtain

(66) ∇̃XY = ∇
N

XY − w(X)ϕY −KN (X,Y ) +
1

2
(h(X,Y ) + h∗(X,Y )),

for X,Y ∈ Γ(TN). Here, if we consider the tangent and normal parts of (66),
then we complete the proof.

On the other hand, we can say that the following equation also satisfies

(67) ∇̃XY = ∇
∗N

X Y − w(X)ϕY +KN (X,Y ) +
1

2
(h(X,Y ) + h∗(X,Y )),

for X,Y ∈ Γ(TM).
From (66) and (67) the following result is clear:

Corollary 4.2. Let (N,∇N

, gN ) be a submanifold of statistical manifold

(M, ∇̃, g) such that ∇̃ is a QSM-connection. Then, for X,Y ∈ Γ(TN), we get

h
′
(X,Y ) = h

′∗

(X,Y ).

Corollary 4.3. Let (N,∇N

, gN ) be a submanifold of statistical manifold

(M, ∇̃, g) such that ∇̃ is a QSM-connection. If N is totally umbilical with
respect to the statistical connections then N is totally umbilical with respect
to the QSM-connection.

Proof. Assume that N is totally umbilical with respect to the statistical
connections. In this case, since we get h(X,Y ) = Hg(X,Y ) and h∗(X,Y ) =
H∗g(X,Y ), the proof is obvious from (65).

Now, we can give Proposition 4.1 for Sasakian statistical manifolds. For

this, denote ∇̆ and h̆ as the induced connection and the second fundamen-

tal form on the submanifold (N,∇N

, gN ) from Sasakian statistical manifold

(M, ∇̃, g, ϕ, η, ξ) with respect to the QSM-connection ∇̃, respectively. Then the

QSM-connection ∇̃ is given as following for X,Y ∈ Γ(TN) and V ∈ Γ(TN⊥)

∇̃XY = ∇̆XY + h̆(X,Y ),(68)

∇̃XV = −ĂV X + D̆XV,(69)

where D̆XV = ∇̆⊥
XV.
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Proposition 4.4. Let (N,∇N

, gN ) be a submanifold of Sasakian statistical

manifold (M, ∇̃, g, ϕ, η, ξ) such that ∇̃ is a QSM-connection. Then, we have

(70) ∇̆XY = ∇
N

XY − η(X)ϕY −KN (X,Y )

and

(71) h̆(X,Y ) =
1

2
(h(X,Y ) + h∗(X,Y )),

for X,Y ∈ Γ(TN).

Proof. Assume thatM is a Sasakian statistical manifold withQSM-connection
and let N be a submanifold of M . Then, using (6) and (28), we complete the
proof.

Proposition 4.5. Let (N,∇N

, gN ) be a submanifold of Sasakian statistical

manifold (M, ∇̃, g, ϕ, η, ξ) such that ∇̃ is a QSM-connection. Then, we have

(72) ĂV X =
1

2
(AV X +A∗

V X)

and

(73) D̆XV =
1

2
(DXV +D∗

XV )− η(X)ϕV,

for X ∈ Γ(TN) and V ∈ Γ(TN⊥).

Proof. Assume thatM is a Sasakian statistical manifold withQSM-connection
and let N be a submanifold ofM . Then, using (6) and (60) in (28), we complete
the proof.

5. Anti-Invariant Submanifolds with Induced Connection of Sasakian
Statistical Manifolds

Definition 5.1. Let (N,∇N

, gN ) be a submanifold of Sasakian statistical

manifold (M, ∇̃, g, ϕ, η, ξ) such that ∇̃ is a QSM-connection. If the structure
vector field ξ is tangent to N at every point of N and ϕ(TN) ⊂ TN⊥ at every
point of N, then N is called an anti-invariant submanifold.

Theorem 5.2. Let (N,∇N

, gN ) be a submanifold of Sasakian statisti-

cal manifold (M, ∇̃, g, ϕ, η, ξ) such that ξ is tangent to N . If g(ϕX, V ) =

g(h̆(X, ξ), V ), then N is an anti-invariant submanifold with respect to the

induced connection from the QSM-connection ∇̃, for any X ∈ Γ(TN) and
V ∈ Γ(TN⊥).

Proof. We know that the equation (28) is valid. Then, from (22) and (28),
we have

(74) ∇̃Xξ +K(X, ξ) = ϕX + g(∇̃Xξ +K(X, ξ), ξ)ξ.
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For X, ξ ∈ Γ(TN) and V ∈ Γ(TN⊥), we get g(∇̃Xξ, V ) = g(ϕX, V ). Here,
using (68), we obtain

(75) g(ϕX, V ) = g(h̆(X, ξ), V ).

Thus, for ∀V ∈ Γ(TN⊥), we have h̆(X, ξ) = ϕX which implies ϕX ∈ Γ(TN⊥).
Then, the proof completes.

Now, from the above theorem we can get the following result:

Corollary 5.3. Let (N,∇N

, gN ) be an anti-invariant submanifold of Sasakian

statistical manifold (M, ∇̃, g, ϕ, η, ξ) satisfying (75) such that ξ is tangent to
N . Then N is not totally umbilical when n ≥ 1.

Proof. Assume that N is totally umbilical. Then h̆(X,Y ) = gN (X,Y )H for

any X,Y ∈ Γ(TN), where H is the mean curvature vector. Since h̆(ξ, ξ) = 0,
we have gN (ξ, ξ)H = 0. Therefore, N is minimal and hence totally geodesic.

Then from (75), for V ∈ Γ(TN⊥), we have h̆(X, ξ) = ϕX = 0. But this is a
contradiction and the proof completes.

Theorem 5.4. Let (N,∇N

, gN ) be an anti-invariant submanifold of Sasakian

statistical manifold (M, ∇̃, g, ϕ, η, ξ) such that ξ is tangent toN . IfK(X,ϕY ) =
DXϕY, for any X,Y ∈ Γ(TN), then ϕ(TXN) is parallel with respect to the in-
duced normal connection.

Proof. Since N is an anti-invariant submanifold, we know that if Y ∈
Γ(TN), then ϕY ∈ Γ(TN⊥). From (69), we have

D̆XϕY = ∇̆⊥
XϕY = ∇̃XϕY + ĂϕY X.

Here, using (18) and (28), from (60) we obtain

(76) ∇̆⊥
XϕY = −A∗

ϕY X+DXϕY −K(X,ϕY )+η(X)Y −η(X)η(Y )ξ+ ĂϕY X.

For V ∈ Γ(TN⊥) and from (76), we get

g(∇̆⊥
XϕY, V ) = g(DXϕY −K(X,ϕY ), V ).

Then, using the last equation and the hypothesis and taking into account
Proposition 2.12 in [28], the proof completes.

Proposition 5.5. Let (N,∇N

, gN ) be an anti-invariant submanifold of

Sasakian statistical manifold (M, ∇̃, g, ϕ, η, ξ) satisfying (75) such that ξ is tan-

gent to N . Then, N has parallel second fundamental form h̆ with respect to
the induced connection ∇̆ if and only if the following equation holds
(77)

∇̆⊥
XϕY = ϕ(∇N

XY )−η(X)[Y−η(Y )ξ−h̆(Y,KN (X, ξ))]+ϕKN (X,Y )+h̆(Y,∇N
Xξ),

for any X,Y ∈ Γ(TN).
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Proof. For any X,Y, Z ∈ Γ(TN), we have

(∇̃X h̆)(Y, Z) = ∇̆⊥
Xh(Y,Z)− h̆(∇̆XY,Z)− h̆(Y, ∇̆XZ).

Here, taking Z = ξ, we find

(∇̃X h̆)(Y, ξ) = ∇̆⊥
Xh(Y, ξ)− h̆(∇̆XY, ξ)− h̆(Y, ∇̆Xξ).

Using (70) and h̆(X, ξ) = ϕX, we get

(∇̃X h̆)(Y, ξ) = ∇̆⊥
XϕY − ϕ(∇N

XY − η(X)ϕY −KN (X,Y ))(78)

− h̆(Y,∇
N

Xξ − η(X)ϕξ −KN (X, ξ)),

which completes the proof.

Using (18) in (78), the result follows:

Corollary 5.6. Let (N,∇N

, gN ) be an anti-invariant submanifold of Sasakian

statistical manifold (M, ∇̃, g, ϕ, η, ξ) satisfying (75) such that ξ is tangent to N .
Then, ϕ(TXN) is parallel with respect to the induced normal connection, if N

has parallel second fundamental form h̆ with respect to the induced connection

∇̆ and ϕ(∇N
XY ) = η(X)[Y −η(Y )ξ]−ϕKN (X,Y )−h̆(Y,KN (X, ξ))+h̆(Y,∇N

Xξ),
for any X,Y ∈ Γ(TN).

Proof. It is clear from Theorem 5.4 and Proposition 5.5.
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