• Title/Summary/Keyword: Reynolds shear stresses

Search Result 60, Processing Time 0.021 seconds

An Experimental Study on Turbulent Characteristics in the Wake of Mesh-Screens (메쉬 스크린 후류의 난류유동 특성에 관한 실험적 연구)

  • 강신형;이현구;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.274-284
    • /
    • 1991
  • Mean flows and Reynolds stresses through circular and elliptic wire-mesh screens in the wind tunnel are measured by using the hot-wire system, and flow structures are investigated. Flow in the core of the wake are nearly uniform and the shear layer is developed along the edge of the screen The turbulent kinetic energy in the core decreases at the fast rate. However turbulence components are not in local equilibrium in the shear layer. The shear layer of the circular screen develops outward according to the radial mean motion. On the other hand, 3-dimensional transverse mean motion was turned to the main mechanism for the elliptic shape of the wake to be circular at the downstream.

Investigation of Twin Vortices in Turbulent Compound Open-Channel Flows using DNS Data (DNS 자료를 이용한 복단면 개수로에서 쌍와(雙渦)에 관한 연구)

  • Joung, Younghoon;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.253-262
    • /
    • 2006
  • The present paper presents a direct numerical simulation of turbulent flows in a compound open-channel. Mean flows and turbulence structures are provided, and they are compared with the numerical data and measured data available in the literature. The simulated results show that twin vortices are generated near the juncture of the main channel and the floodplain and their maximum magnitude is about 5% of bulk streamwise velocity. At the juncture, the simulated wall shear stress becomes the maximum unlike the experimental data. A quadrant analysis shows that both sweeps and ejections become the main contributor to production of Reynolds shear stresses. A conditional quadrant analysis reveals that the directional tendency of dominant coherent structures determines the production of Reynolds shear stress and the pattern of twin vortices.

A Numerical Study on the Blood Flow through a Disc Type Heart Valve (원판형 심장판 주위의 혈액 흐름에 대한 수직 해석)

  • 박영필;이신재
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.89-102
    • /
    • 1981
  • The recirculating flows which occur in the prosthetic heart valve have been known to cause several diseases in the human body. And the recent studies show that the shear stress at the wall of the artery is also very important factor in the formation of thrombus. And many studies knave been devoted in obtaining more information about the blood flow through the prosthetic heart valve. In this Paper, the steady axisymmetric flow through the Disc-Type Heart Valve is studied by using the numerical method. The geometry of the Disc-Type Heart Valve is simplified, and the flow is assumed to be steady axisymmetric flow. The vorticity transport equation derived from the Wavier-Stoke's equation is used as the governing equation, and the explicit finite difference method is used to obtain the steady state solution. The results for several Reynolds numbers show that the recirculating flow becomes large as the Remolds number increases. Furthermore, it can be shown that the magnitudes of the vorticity and the stresses are also increased with the Reynolds number, but there is only a little change in their configurations of distribution and in their positions of maximum values.

  • PDF

Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake (2차유동이 평판후류의 난류구조에 미치는 영향)

  • Kim, Hyeong Soo;Lee, Joon Sik;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

Numerical Study on Viscous Wakes of Two-Dimensional Screens Normal to the Uniform Stream (균일유동에 수직인 2차원 스크린 후류의 점성유동에 관한 수치적 연구)

  • 강신형;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.590-598
    • /
    • 1988
  • Viscous flows through a screen normal to an uniform flow are numerically simulated. A .kappa.-.epsilon. model is adopted for evaluation of the Reynolds stresses. The existence of a screen is regarded as extra sources in the momentum equations. The amount of extra sources is related to the resistance coefficient and the refraction coefficient of the screen. Flows are numerically simulated for various resistance coefficients and heights of the screen and Reynolds numbers. The present method has been verified to reasonably simulate viscous wakes and shear layers of the screen, for which the inviscid theory is quite limitted. As the fluids approach the screen, the velocity is reduced and the pressure is raised to satisfy the Bernoulli equation. After passing the screen, the velocity shows its minimum value at the down-stream, but static pressure is slowly recovered. A detached separation-bubble from the screen appears as the resistance coefficient is increased to a certain level. Such results are qualitatively in agreement with limitted experimental data available. The turbulent kinetic energy shows its maximum value at further down stream and decrease thereafter.

Direct numerical simulations of the turbulent boundary layers over the rough walls (표면조도가 있는 난류경계층의 직접수치모사)

  • Lee, Jae-Hwa;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.379-381
    • /
    • 2011
  • Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over two-dimensional (2-D) and rod and three-dimensional (3-D) cube rough walls were performed to investigate the effects of streamwise spacing on the properties of the TBL The 2-D and 3-D roughness were periodically arranged in the downstream direction with pitches of px/k=2, 3, 4, 6, 8 and 10 and for the cube, the spanwise spacing is fixed to pz/k=2 with staggered array, where px and pz are the streamwise and spanwise spacings of the roughness and k is the roughness height. Inspection of the Reynolds stresses showed that except for px/k=2 and 3 over the 2-D rough walls, the effects of the surface roughness extend to the outer layer over the 2-D and 3-D rough walls and the magnitude of the Reynolds shear stress in the outer layer is increased with proportion to px/k. However, such results are contrary to the trends of form drag, roughness junction and roughness length against px/k, which showed the maximum values at px/k=8 and 4 over the 2-D and 3-D rough walls respectively.

  • PDF

An experimental study on the transitional boundary layer developing on NACA0012 airfoil (NACA0012 날개 위의 천이 경계층에 관한 실험적 연구)

  • Gang, Sin-Hyeong;Sin, Sang-Cheol;Lee, Hyeon-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1689-1699
    • /
    • 1996
  • A study on the transitional boundary layer with arbitrary pressure gradient under various upstream conditions is very important for engineering applications like the performance predictions of the turbomachineries under various and strong disturbances. Experimental data on the transitional boundary layer for real cascades of the turbomachinery are rare because of difficulties in boundary layer experiments. Flow on NACA0012 airfoil is more similar to the real case than that on the flat plate with which many researches are done. The data of the transitional flow on the airfoil could be used to verify or to develop a turbulence model for numerical simulations. The experiment was performed with two cases of Reynolds number at a=0$^{0}$ and one case of Reynolds number at a=5$^{0}$ . The measured data are the transition length and the wall shear stresses. These two characteristic values are measured within 25%~90% of the airfoil chord by Computation Preston tube Method(CPM) proposed by Nitsche et al.(1983). At a=0$^{0}$ , transition occured at 70% and 55% of chord length when R $e_{c}$=6*10$^{5}$ and 8* 10$^{5}$ , respectively. It started when R {\theta}=500 regardless of R $e_{c}$, and ended when R {\theta}=750, and 850 respectively. The transition length was 15~20% of the chord length. At a=5$^{0}$ (R $e_{c}$=6*10$^{5}$ ), boundary layer on the pressure side does not undergo transition, but on the suction side transition occured at .chi.$_{c}$/c=0.16 and ended at .chi.$_{c}$/c=0.22.c//c=0.22./c=0.22.c//c=0.22.

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF

A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique (큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석)

  • Choe, Myeong-Ryeol;Choe, Hae-Cheon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

Experimental Study on Turbulent Characteristics of Axisymmetric Impinging Jet with a Modified Initial Condition (초기조건의 변형에 따른 축대칭 충돌분사류의 난류특성에 대한 연구)

  • 한용운;이근상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3166-3178
    • /
    • 1993
  • The turbulent flow characteristics of impinging jet have been investigated by the hot wire anemometry with a movable impinging wall. Turbulences were generated by the meshed jet as well as the typical round jet and their characteristics were compared, of mean velocity profiles, turbulent intensities. Reynolds stresses, similarities and their centerline flow behaviors. The meshed jet tends to make shear layer wider than the normal one in the initial region and the velocity profiles of the normal jet is rather contractive being compared with those of the meshed one near the wall. The effect of meshed exit appears only within 4D at the begining of jets and the cascading process of the meshed one marches more rapidly than that of the normal jet. The wall effects appear in the downstream of about 0.85 H to the impinging wall for every case of wall positions in both nozzles.