DOI QR코드

DOI QR Code

Investigation of Twin Vortices in Turbulent Compound Open-Channel Flows using DNS Data

DNS 자료를 이용한 복단면 개수로에서 쌍와(雙渦)에 관한 연구

  • 정영훈 ((주)남원건설엔지니어링 수자원부) ;
  • 최성욱 (연세대학교 사회환경시스템공학부)
  • Received : 2005.08.17
  • Accepted : 2005.12.04
  • Published : 2006.05.31

Abstract

The present paper presents a direct numerical simulation of turbulent flows in a compound open-channel. Mean flows and turbulence structures are provided, and they are compared with the numerical data and measured data available in the literature. The simulated results show that twin vortices are generated near the juncture of the main channel and the floodplain and their maximum magnitude is about 5% of bulk streamwise velocity. At the juncture, the simulated wall shear stress becomes the maximum unlike the experimental data. A quadrant analysis shows that both sweeps and ejections become the main contributor to production of Reynolds shear stresses. A conditional quadrant analysis reveals that the directional tendency of dominant coherent structures determines the production of Reynolds shear stress and the pattern of twin vortices.

본 연구에서는 복단면 개수로 난류흐름에 대한 직접수치모의(DNS)를 수행하였다. DNS 자료를 이용하여 평균흐름 및 난류 구조를 제시하며, 기존의 실험자료 및 수치해석결과와 비교된다. 주수로와 홍수터의 접합부 부근에서 쌍와(雙渦)가 생성되는데, 그 최대크기는 체적평균된 주흐름방향 유속의 약 5%로 나타났다. 쌍와(雙渦)의 영향에 의해 접합부에서 벽전단응력이 최대값을 보였는데, 이는 기존 LES 자료와는 일치하지만 기존 실험연구결과와는 다른 것으로 그 원인에 대해 상세히 논의되었다. 사분면 해석을 통해 접합부 부근에서 레이놀즈 전단응력은 주로 쓸기현상 및 분출현상에 의해 생성되는 것으로 나타났다. 또한 조건부사분면 해석을 통해 지배적인 고유구조의 방향성이 레이놀즈 전단응력 및 쌍와(雙渦)의 생성을 결정한다는 것을 확인하였다.

Keywords

References

  1. Arnold, D., Stein, 0J., and Rouve, G (1989) Sophisticated measurement techniques for experimental investigation of compound open channel flow, Computational Modelling and Experimental Method in Hydraulics, Elsevier, Dubrovnik, Yugoslavia, pp. 11-21
  2. Beam, R.M. and Warming, R.F. (1976) An implicit finite-difference algorithm for hyperbolic systems in conservation law form, Journal of Computational Physics, Vol. 22, pp. 87-110 https://doi.org/10.1016/0021-9991(76)90110-8
  3. Broglia, R., Pascarelli, A., and Piomelli, U. (2003) Large-eddy simulation of ducts with a free surface, Journal of Fluid Mechanics, Vol. 484, pp. 223-253
  4. Cokljat, D. and Younis, B.A. (1995) Compound-channel flows: A parametric study using a Reynolds-stress transport closure, Journal of Hydraulic Research, IAHR, Vol. 33, No.3; pp. 307-320 https://doi.org/10.1080/00221689509498573
  5. Dukowicz, J.K. and Dvinsky, A.S. (1992) Approximate factorization as a high order splitting for the implicit incompressible flow equations, Journal of Computational Physics, Vol. 102, pp. 336-347 https://doi.org/10.1016/0021-9991(92)90376-A
  6. Gavrilakis, S. (1992) Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, Journal of Fluid Mechanics, Vol. 244, pp. 101-129 https://doi.org/10.1017/S0022112092002982
  7. Huser, A. and Biringen, S. (1993) Direct numerical simulation of turbulent flow in a square duct, Journal of Fluid Mechanics, Vol. 257, pp. 65-95 https://doi.org/10.1017/S002211209300299X
  8. Joung, Y. and Choi, S.-U. (2006) Direct numerical simulation of low Reynolds number turbulent flows in a straight open-channel with sidewalls, Journal of Engineering Mechanics, ASCE, submitted
  9. Joung, Y., Choi, S.-U., and Choi, J.-L (2006) Direct numerical simulation of turbulent flows in a square duct: An analysis of secondary flows, Journal of Engineering Mechanics, ASCE, accepted
  10. Kim, K., Baek, S.-J., and Sung, H.J. (2002) An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, Vol. 38, No.2, pp. 125-138 https://doi.org/10.1002/fld.205
  11. Kim, J. and Moin, P. (1985) Application of a fractional step method to incompressible Navier-Stokes equations, Journal of Computational Physics, Vol. 59, pp. 308-323 https://doi.org/10.1016/0021-9991(85)90148-2
  12. Launder, B.E. (1990) Phenomenological modelling: present and future- Whither Turbulence-, Turbulence at the Crossroads (ed. J.L. Lumley), Lecture Notes in Physics, 357, 439, Springer
  13. Lin, B. and Shiono, K. (1995) Numerical modelling of solute transport in compound channel flows, Journal of Hydraulic Research, IAHR, Vol. 33, No. 6, pp. 773-788 https://doi.org/10.1080/00221689509498551
  14. Mckee, P.M., Elsawy, E.M., and Mckeogh, E.J. (1985) A study of the hydraulic characteristics of open channels with flood-plain, Proceedings of 21 st IAHR Congress, Melbourne, Australia, pp. 361-366
  15. Naot, D., Nezu, L, and Nakagawa, H. (1993) Hydrodynamic behavior of compound rectangular open channels, Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 3, pp. 390-408 https://doi.org/10.1061/(ASCE)0733-9429(1993)119:3(390)
  16. Perot, J.B. (1993) An analysis of the fractional step method, Journal of Computational Physics, Vol. 108, pp. 51-58 https://doi.org/10.1006/jcph.1993.1162
  17. Pezzinga, G. (1994) Velocity distribution in compound channel flows by numerical modeling, Journal of Hydraulic Engineering, ASCE, Vol. 120, No. 10, pp. 1176-1197 https://doi.org/10.1061/(ASCE)0733-9429(1994)120:10(1176)
  18. Pope, S.B. (2000) Turbulent flows, Cambridge University Press, Cambridge, UK
  19. Prinos, P., Townsend, R., and Taboularis, S. (1985) Structure of turbulence in compound channel flow, Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 9, pp. 1246-1261 https://doi.org/10.1061/(ASCE)0733-9429(1985)111:9(1246)
  20. Shiono, K. and Feng, T. (2003) Turbulence measurements of dye concentration and effects of secondary flow on distribution in open channel flows, Journal of Hydraulic Engineering, ASCE, Vol. 129, No. 5, pp. 373-384 https://doi.org/10.1061/(ASCE)0733-9429(2003)129:5(373)
  21. Shiono, K. and Knight, D.W. (1991) Turbulent open channel flows with variable depth across the channel, Journal of Fluid Mechanics, Vol. 222, pp. 617-646 https://doi.org/10.1017/S0022112091001246
  22. Shiono, K. and Lin, B. (1992) Three dimensional numerical models for two stage open channel flows, HYDROCOMP 92, Vituki, Hungary, pp. 123-130
  23. Shiono, K., Scott, C.F., and Kearney, D. (2003) Predictions of solute transport in a compound channel using turbulence models, Journal of Hydraulic Research, IAHR, Vol. 41, No. 3, pp. 247-258 https://doi.org/10.1080/00221680309499970
  24. Sofialidis, D. and Prinos, P. (1998) Compound open-channel flow modeling with nonlinear low-Reynolds $\kappa\aa$ models, Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 3, pp. 253-262 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:3(253)
  25. Sofialidis, D. and Prinos, P. (1999) Numerical study of momentum exchange in compound open channel flow, Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 2, pp. 152-165 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(152)
  26. Tannehill, J.C., Anderson, D.A., and Pletcher, R.H. (1984) Computational Fluid Mechanics and Heat Transfer, McGraw-Hill
  27. Thomas, T.G and Williams, l.J.R. (1995) Large eddy simulation of turbulent flow in an asymmetric compound open-channel, Journal of Hydraulic Research, IAHR, Vol. 33, No. 1, pp. 27-41 https://doi.org/10.1080/00221689509498682
  28. Tominaga, A. and Nezu, I. (1991) Turbulent structure in compound open-channel flows, Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 1, pp. 21-41 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:1(21)
  29. Tominaga, A., Nezu, I., and Ezaki, K. (1989) Experimental study on secondary currents in compound open channel flows, Proceedings of 23rd Congress of lAHR, Ottawa, Canada, pp. A15-A22
  30. Xu, H. and Pollard, A. (2001) Large eddy simulation of turbulent flow in a square annular duct, Physics of Fluids, Vol. 13, No. 11, pp. 3321-3337 https://doi.org/10.1063/1.1410386