• Title/Summary/Keyword: Response Modification Factor

Search Result 162, Processing Time 0.024 seconds

Seismic Performance of Circular Columns considering Transverse Steel Details (횡방향철근 상세에 따른 원형기둥의 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.259-266
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circular reinforcement concrete bridge piers particularly with regard to assessing the displacement ductility curvature ductility response modification factor(R) and plastic hinge region etc, The experimental variables of bridge piers test consisted of transverse steel details amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited suffcient ductile behavior and seismic performance. Also it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

Variability of Seismic Demand According In the Selection the Earthquake Ground Motion Groups (지진기록 선택에 따른 요구지진 하중의 변화)

  • 황수민;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.417-422
    • /
    • 2004
  • It is the challenging task to predict seismic demand for structural design. In current seismic design provisions such as UBC, NEHRP, ATC 3-06, the seismic demand is calculated using the response spectrum with response modification factor (R). This paper investigates variability of seismic demand according to selecting the earthquake ground motion groups. Different Earthquake sets used by Miranda, Riddell and Seed selected were used in this study. Earthquake sets selected by authors include 62 sets of near field ground motion and 19 sets one pulse ground motion. Linear Elastic Response Spectrum (LERS), the variation of performance points of calculated by Capacity Spectrum Method (CSM) were considered with respect to the different sets of earthquake ground motions.

  • PDF

Hydroelastic Response of VLFS with Submerged-Plate Using Modified Hydrodynamic Coefficients

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.569-578
    • /
    • 2007
  • The primary objective of this study is to present a modified method of hydroelastic analysis and application of it to the VLFS with submerged plate. The modal analysis method is applied to the VLFS with the submerged plate using the modified hydrodynamic coefficients. Namely, the wave exciting forces are modified by the transmission wave coefficients, while the interaction factor is used for the modification of radiation forces. To validate the proposed method, comparisons between the numerical calculations and experimental data have been carried out for the deflections of VLFS, and it shows good agreement between the calculation and experiment. The results presented in this study demonstrate that the elastic response of the VLFS is strongly affected by the hydrodynamic interaction induced by the submerged plate. As a result, we can confirm that the submerged plate is useful for reducing the hydroelastic deflection of VLFS, and the proposed method is valuable for predicting the elastic response of VLFS with attached the submerged plate.

Seismic Performance Evaluation of RC Structure Strengthened by Steel Grid Shear Wall using Nonlinear Static Analysis (비탄성 정적해석을 이용한 격자강판 전단벽 보강 RC구조물의 내진성능평가)

  • Park, Jung Woo;Lee, Jae Uk;Park, Jin Young;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2013
  • The effects of earthquakes can be devastating especially to existing structures that are not based on earthquake resistant design. This study proposes a steel grid shear wall that can provide a sufficient lateral resistance and can be used as a seismic retrofit method. The pushover analysis was performed on RC structure with and without the proposed steel grid shear wall. Obtain the performance point that the target structure for seismic loads applied to evaluate the response and performance levels. The capacity spectrum at performance point is nearly elastic range, so satisfied the performance objectives(LS level). And response modification factor(R factor) were calculated from the pushover analysis. The R factor approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. The R factor increases from 2.17 to 3.25 was higher than the design criteria. As a result, according to reinforcement by steel grid shear wall, strength, stiffness, and ductility of the low-rise RC structure has been appropriately improved.

Comparative Study of Design Codes on the Transverse Steel Amount of Circular Reinfored Concrete Columns (철근콘크리트 원형단면교각의 횡방향철근량에 관한 설계비교)

  • 배성용;곽동일;김희덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • This paper is conducted to compare the seismic design standard of a bridge column such as the Korean Bridge Design Standard(KBDS), EC 8, NZS 3101 and ATC 32. The KBDS adopted the seismic design requirements in 1992. The earthquake magnitude in Korea is compared with those in the west coast of the USA. It may be said that the current seismic design requirements of the KBDS provides design results, that are too conservative especially for transverse reinforcement details and amounts in reinforced concrete columns. This fact usually creates construction problems in concrete casting, due to congestion of transverse reinforcement. Furthermore, the effective stiffness; $I_{eff}$ depends on both the axial load P/$A_gF_{ck}$ and the longitudinal reinforcement ratio $A_{st}/A_g, so it is the conservative to use the effective stiffness I$_{eff}$ than the gross section stiffness Ig. Seismic design for the transverse reinforcement content of the concrete column was analyzed and considered to have an extreme-fiber compression strain, response modification factor, axial load and effective stiffness etc.c.

  • PDF

Estimation of R-factor and Seismic Performance for RC IMRFs using N2 Method (N2 Method를 이용한 RC 중간모멘트 연성골조의 반응수정계수 및 내진성능 평가)

  • 윤정배;이철호;최정욱;송진규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.33-39
    • /
    • 2002
  • Response Modification Factor(R-factor) approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. However R factors were set empirically and simply based on the professional committee consensus on observed performance of building structures during past earthquakes. Consequently some major shortcomings linked to the current R factor approach have been pointed out. Using reinforced concrete intermediate moment-resisting frames(RC IMRFs), an analytical procedure is presented in this paper to establish R factor rationally. To this end, analytical R values were evaluated based on N2 Method and compared with the values recommended by IBC 2000. Overall, the analytical results correlated well with the code values. However the results also revealed that R factor might strongly depend on the system fundamental period. As evidenced by the interstory drift index(IDI) analysis results of this study, current R-factor based(or, Life Safety based) design tends to fail in fulfilling other implicit and hopeful performance objectives such as immediate Occupancy and Collapse Prevention. Performance based design(PBD) appears to be a promising approach to meet the multi level seismic performance objectives assigned to the building structures of nowadays.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Study of Dynamic Characteristics of 2.5-MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 동특성 연구)

  • Kimg, Jung-Su;Park, No-Gill;Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.314-323
    • /
    • 2014
  • In this study, a gearbox and blade were modeled in the MASTA program, and the housing and carrier components were modeled using a finite element method. Using substructure synthesis, all the components were combined and used to establish a vibration model of a 2.5-MW wind turbine gearbox. In addition, the safety displacement factor was evaluated using an AGMA data sheet about bearing's outer race for the input shaft and output shaft. As a result, the bearing's outer race for the input shaft, and the radial and axial responses were satisfied by the $1^{st}$ and $2^{nd}$ planetary gears and the $3^{nd}$ helical gear transmission error(TE), respectively. However, the output shaft support bearing's outer race responses were not satisfied with the radial response by the $2^{nd}$ TE and axial response by the $3^{rd}$ TE. To reduce the vibration, tooth modification was needed. After profile tooth modification, at the outer race of the output shaft support bearing, the radial response was reduced by approximately $20{\mu}m$, and the axial response was reduced by approximately $6{\mu}m$.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.