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Abstract : The primary objective of this study is to present a modified method of hydroelastic analysis and application of it to the VLFS
with submerged plate. The modal analysis method is applied to the VLFS with the submerged plate using the modified hydrodynamic
coefficients. Namely, the wave exciting forces are modified by the transmission wave coefficients, while the interaction factor is used for
the modification of radiation forces. To validate the proposed method, comparisons between the numerical calculations and experimental
data have been carried out for the deflections of VLES, and it shows good agreement between the calculation and experiment. The results
presented in this study demonstrate that the elastic response of the VLFS is strongly affected by the hydrodynamic interaction induced
by the submerged plate. As a result, we can confirm that the submerged plate is useful for reducing the hydroelastic deflection of VLFS,
and the proposed method is valuable for predicting the elastic response of VLFS with attached the submerged plate.
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1. Introduction

Wave-induced motions and loads on pontoon-type floating

airport proposed in Japan have been extensively
investigated by linear hydroelastic theory. Many studies
have been performed where various methods, such as panel
method (Maniar and Newman, 1996), modal expansion
method (Lin and Takaki, 1998) and application of ray
(Takagi 2000)
successfully in the numerical analysis of the response of
VLFS
deflection of VLFES, a device has been developed, which is
the submerged plate attached to the weather side of VLFS

with a clearance gap. In case of the VLFS without the

theory and Kohara, have been used

in waves. In order to reduce the undesirable

submerged plate, the numerical methods to determine the
elastic response of VLFS have been already proposed
(Takaki and Gu, 1996). These numerical methods could
estimate accurately the motion of VLFS without the
submerged plate. However, it is necessary to predict the
hydrodynamic interaction effects between the VLFS and the
submerged plate because these effects are affecting to the
other structure and the fluid motions around the submerged
plate become highly nonlinear behaviors. Thus, we have to
modify the on the VLFS
considering the induced by the
submerged plate. In this study, the hydroelastic behaviors

hydrodynamic coefficients
interference influence
of VLFS with submerged plate are analyzed by applying

the modified hydrodynamic coefficients. The analysis
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techniques for response of VLFS are based on the
hydroelasticity, in which the coupled hydrodynamics and
structural dynamics problems are solved simultaneously.

The motion equation for a elastic structure has been solved
by using the Lagrange’s equation that ensures the
satisfaction of energy conservation principle. The unknown
deflection and hydrodynamic pressure of the structure are
both discretized with bicubic B-spline function. The B-
spline expressions of the dry-eigenmodes of the structure
are obtained by solving the eigenvalue problem of the
(Lin and Takaki, 1998).
Hydrodynamic pressures due to the structure motion and

proposed motion equation

incident waves are calculated by applying the pressure
distribution method (Yamashita, 1979) with the resultant
eigenmodes. The usage of B-spline discretization for
hydrodynamic pressure makes it possible to predict the
hydroelastic response in very short wavelength cases.

The primary objective of this study is to present a
modified method of hydroelastic analysis and application of
it to the VLFS with submerged plate. The modal analysis
method is applied to the VLFS with the submerged plate
using the modified hydrodynamic coefficients. Namely, the
wave exciting forces are modified by the transmission
wave coeffictents, while the interaction factor is used for
To validate the

comparisons between the numerical

the modification of radiation forces.
proposed method,
calculations and experimental data have been carried out for
the deflections of VLES, énd it shows good agreement
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between the calculation and experiment. Finally, the effect
of submerged plate for reducing the elastic deflection is
discussed from the view point of hydrodynamic forces.

2. Hydrodynamic pressure

The size of the floating structure considered in this

study is several Kkilometers in length and about one
kilometer in width, and in comparison with these scales the
depth of the structure is only a few meters. Therefore we
simplify the structure to an elastic plate floating on the free
surface. In addition, the displacement of the structure along
horizontal direction will be very small comparing with that
along the vertical direction and will be neglected in this

study. Therefore, deflection vector of the structure, W

(x,»;1), is given by
W (x,y;0)= W(x.y;0)e, (1)

The coordinate system and the sketch of the structure
are shown in Fig. 1.

Incident wave

Fig. 1 Coordinate system and notations

In this method, the structure is discretized into a number
of B-spline elements. The unknown vertical deflection W is
represented by fourth order bi-cubic B-spline functions. The
deflection vector is given in a form of

W (x,yt) =

m{gaZa’Bmx,y)e"“”}ez
i

(2)

Where Bi(%.)) is the product of B-spline basis functions
with respective to ¥ and Y, and @' denotes the unknown
polygon vector. Substituting this expression into Lagrange’s
equation and omitting the | -th generalized forcing term
F;, we get the following generalized eigenvalue problem

Kl = alizfa) @

The expressions of matrices I_M J and [Kj are given in

the form of
M’] = pd .[Bi(x,y)Bj(x,y)dS,
;5 4)
2 2
K. = DJ {aZBi 7% +azBi i
j 2 52 2 2
5 ox” Ox oy° oy
o°B, 8’B; 9°B, 9°B;
+ ) +
ox? y? 5)’2 o’
2p 9’B;
v21-0) 2B 20 Ly )
Ox0y Oxdy

By solving this eigenvalue problem, we can obtain the
shape functions of dry-eigenmodes of the structure. The r -

th eigenmode can be expressed in term of the r-th
eigenvector {ar} like
w(xy) = ) alB(x) ©
{

Time harmonic motions of fluid field and the VLFS will
be induced by regular incident waves. We can express the
velocity potential in the fluid field, ¢, pressure distribution
on the bottom of the VLFES, P, and vertical deflection of the
structure, W, in following forms

o) = Hioggrre™ | @
P(x,y;t) = m[pggap(x,y)ei“”], ®)
W(xyt) = ngaW(x,y)ei””J ©)

where r=(x,%,2), @ is the circular frequency, Sa is the
amplitude of the incident wave, £ is the fluid density and

&8 is the gravitational acceleration. Their spatial components

are given by

q"
¢ = ¢I (") +¢D (r)+ - Sa ¢r (r) (10)
p = pz(x,y)+pD(x,y)+Zq—pr(x,y),
~ 4 (1)
w o= wr(x,y)+wp(x,y)+ iwr(x,y)
! ° Z,:ga (12)

Suffix I represents the quantities with respective to the
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incident wave, and suffix D is to the scattering component.
W, is the shape function of the r -th eigenmode, ¢ " s its

complex amplitude, and Pr is the radiation pressure on the
bottom due to the motion of the r-th eigenmode with unit
amplitude. The potential function #(x,¥,2) must satisfy the
following boundary conditions,

v = 0 in Q
K¢—% =0 on Sr

oz
K¢——aﬁ = -p on Sy

Oz
éﬂ =0 on Sp (13)
oz

The incident potential 91 is given by
1 _: .

¢ (x,3,2) = 7(_eKz iK (xcos@+ysin 8) (14)

We apply the pressure distribution method to determine
the pressure distributions of the diffraction and radiation
problems. Using the pressure distribution method, the
velocity potential in fluid domain can be determined by an

integral over the wetted surface Sh
-[Ir
S,

where r=(%%,2) and r' =(£.7.0) represent the field point

é (r)= ") G (r,r") ds (15)

and source point respectively. Green’'s function for finite

water depth % is given by

coshk(z + h)J o (kR)k
ksinh kh — (K —iu)coshkh

G (rr)= 27 im

(16)

where R=y(-82+(-m? K=0?/g and Jy is the Bessel

Function of the zeroth order. The pressure distributions on
the bottom of the VLFS must satisfy equation

+Kﬂpr

pr(r 5 @G (r=rD ds =-w, ()

+K ||p , )
pp (r) :!“‘. ? G Gr-rDas =w (n amn

h

Notice that r is also on the bottom of the plate in this
equation, we can rewrite Green’s function in the form of G

(r,r)= G (r-r). Boundary integral equation (17) is
solved with B-spline Galerkin panel quadrature. Similar to
the discretization of the deflection, we discretize the
pressure due to the r-th radiation motion in terms of bi-
cubic B-spline functions

pr(x,y) =
(1)

D BiBi(x.y)
i

To obtain the i-th unknown polygon ﬁri, we substitute this

expression into equation (17), multiply the equation by
B;(x,y) and make an integral over the bottom surface Sh.

This procedure leads to a linear system of simultaneous

equations
DTy +KGy 1B = W,
J (19)
where
7y = [[BCnB sy,
Sh
Gy = [[micen| [[B,&mGr—rasin asay,
Sh Sh
W, = IIB,»(x,y)w,(x,y)dxdy
S, (20)

We estimate the radiation pressure Pr by solving equation

(19). The scattering pressure PD can be determined in

exactly the same way. Then we will determine the
amplitudes of the motion of each radiation freedom, 9" /s a,

with the resultant pressure distributions D and Pr.

3. Motion equation

We apply Lagrange’s equations to obtain the motion
equation of the structure. Lagrange’s equations represent
the energy conservation principle of the structure and have
general forms of

= F

r

der) or ou
dt\og" | oq" oq" (21

where

q" : the r-th generalized coordinate,

T : kinetic energy of the structure,
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(a) Without submerged plate

(b) With submerged plate

Fig. 2 VLFS model with and without submerged plate

U : deformation potential energy of the structure,

F, . the r-th generalized force.
T, U and F, are all the functions of structural deflection.

To a structure, we can generally define its deflection by a

vector
p= 2270y )

is the position vector of the structure. With

(22)
where r

definition (22), we have the kinetic energy and generalized
hydrodynamic force

(s
2 I)Ps\ o T
v
1 .
= EZZMrsqrqs
r 5
-[Jr

Sh (r7 t) n'Wr dS

(23)

(24)

Ps is the density of the structure, P denotes the

of the

structure, and # represents the normal vector points

hydrodynamic pressure on wetted surface Sh

inward the fluid domain. With stress tensor ¥ and strain

glf we have the deformation potential energy

%ZZKrsq’qs
r S

tensor

’

1 .
3 Jfrres =
vV

€j and o? are functions of the deflection W (r,?)  and

(25)

they satisfy the generalized Hook's law

ol = EMgy (26)

ikl

where EY® is the tensor of Young’s modulus.

Hydrodynamic pressure on wetted surface Sk is defined by
formula (8) and (11), and the deflection is defined by
formula (9) and (12). Using these definitions together with

isotropic plate assumption, we have generalized mass My
and stiffness Krs for the plate
My = pd |[BG)B s,
s 27
5B, 8°B, aZB, 9*B,
Ky = D _U 2 2 .2
ax? T oy
o’B, 8°B, 0°B, 9°B,
+v +
ax? ay2 ? ox?
2p
e OB OB | (28)
Oxdy 6x8y

where D=Ed*/120-v?) is the flexural rigidity of the
structure, E represents the Young's modulus, v denotes

the Poisson’s ratio, and d is the thickness of the structure.
The final form of motion equation of the elastic structure
for determining the amplitude of the r-th mode is

Z _x M + J.J.w,psds — jJ.w,des

s S, (29)
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0.5

—m— without sub-plate
{ —@— with sub-plate

Radiation force

x/(L72)

; —m— without sub-plate
0.12 po T b i{| —®— with sub-plate

Radiation force

x/(L/2)

Fig. 3 Radiation forces on the VLFS with/without

submerged plate

K represents the wave number of incident waves. Effects
of structural damping has been ignored in this equation.

After obtaining the amplitudes, we can estimate the
structural loads. Namely, we can evaluate the bending

moments Mx and M, with the resultant vertical deflection
like

2 2
M, = -D 0 V2V va V;’
Ox oy
otw  o'w
M, = _D( P tv axz] (30)

In the following section, we will apply the proposed
method to the VLFS with submerged plate considering the
hydrodynamic interaction effects.

4. Modification of the hydrodynamic forces

We assume that the structure has been discritized by the
finite element method, and the equation can be written as

[ms Jig}+ [ s Sz} = {F}

(3D

where [M S] and [KS] are the structural mass and

stiffness matrices, respectively, and {z} is the vector of

nodal displacement. {F}
resulting from the distributed fluid forces. These forces can

is the vector of nodal forces

be expressed as

(F)={Fe)+ Fu + ) @)
where the vectors on the right side of Eq.(32) correspond to
radiation, hydrostatic and wave exciting forces, respectively.

In order to estimate more accurately the hydroelastic
deflection of VLFS with submerged plate, we have modified
the hydrodynamic forces, which are composed of wave
exciting forces and radiation forces.

First of all, we have carried out the numerical simulation
to investigate the interaction of heave radiation forces for
various cases. Fig. 3 shows the results of heave radiation
forces on the VLFS with and without the submerged plate,
and the marks represent the first order component through
the fourier analysis. As shown in Fig. 3, it is noted that the
heave radiation forces are increased due to the effect of
submerged plate. Therefore, the radiation pressures in the
equation (32) have to be modified by the interaction factor,
which is defined to the increase ratio of radiation forces
induced by the submerged plate. As shown in Fig. 3, we
can see that the increasing ratio of radiation force is the
largest at the short oscillation period. On the other hand,
we can find that the radiation forces are increased about
6% due to the effect of submerged plate at the long
oscillation period.

Secondly, we have modified the wave exciting force in
order to consider the effect of submerged plate. The
characteristic of hydroelastic response is regarded as the
characteristic of energy propagation in waves. The energy
of propagation wave consists of incident wave energy,
reflection wave energy and dissipation wave energy. It is
considered that the increase of dissipation wave energy
and the decrease of incident wave energy will reduce the
energy of the propagation wave. The breaking wave
induced by the submerged plate is a typical example of
the dissipation wave energy. Therefore, the attachment of
additional structure on the weather side of VLFS, which is
the submerged plate, can result in the reduction of
propagation wave energy. Thus, the wave exciting forces
have been modified by the transmission wave coefficients
as shown in Fig. 4 in order to consider the effect of

submerged plate. The transmission wave coefficient C; is

defined by the ratio of the transmission wave amplitude to
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the incident wave amplitude (Takaki and Lin, 2000).
Computations were performed to predict the transmission
wave coefficients for submergence depth of submerged

plate d=20mm, wave amplitude %a=50mm, and wave

period Tw= 08~18 seconds. Fig. 5 shows the instantaneous

pressure contour and velocity vector field around the

submerged plate for short wave period (Tw=08sec.). The

results obtained by this simulation, i.e., transmission wave

coefficient Ct, are shown in Fig. 4. According to this
result, it is noticeable that the amplitude of transmission
wave is remarkably decreased due to the submerged plate
especially at short wave periods. Thus, these transmission
wave coefficients are used for the modification of wave

exciting force {F W} in the Eq.(32).

1.0 : - . : . .
L | ® Transmission wave / Incident wave ]
08F o LR RPN S Foeeens b R
L, e
08 RIS ESRERTINY S ORY SRR s
i : e ® 5 : :
S | [, i
04k i e A
02 . SRR S S— S— — S—
00 Y L e 1 3 L 1 1 A
06 0.8 1.0 1.2 14 16 1.8 20
T(sec)
Fig. 4 Transmission wave coefficient G

0.8

0.8

04

Fig. 5 Pressure contour and velocity vector field for
Tw=08sec.

T0.8sec

deflection amplitude

m  EXP.(without sub-plate)
= CAL.(without sub-plate)
—— CAL.{with sub-plate)
& EXP.(with sub-plate)

deflection amplitude

m  EXP.(without sub-plate)
CAL.(without sub-plate) |-
- CAL.(with sub-plate)

<& EXP.(with sub-plate)

5/

0.0 l 0.5 . 1.0
X/(L/2)

Fig. 6 Deflection amplitude along the centerline of VLFS
with and without submerged plate

5. Results and discussion

Table 1 Principal particulars of the VLFS model
Scale Ratio 1/100
Length (m) 524
Width (m) 2.09
Depth (m) 0.07
Draft (m) 0.02
Sa (m) 0.05
E (kgf/m’) 2.101010
v 0.3
Stiffness EI (kgfm) 1171
Water Depth (m) 30

We apply the present numerical method to the 1/100 scale
model to investigate the elastic response of VLFS with and
without the submerged plate. The model test had been
carried out at Hiroshima University (Ikeda and Fujii, 2002),
and the principal particulars of the VLFS model are listed
in Table 1. The VLFS model consists of the aluminum
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grillage beam and the styrene-form floaters (340mmx340mm
unit) as shown in Fig. 2. The submerged plate has been
modeled by the aluminum plate which is attached on the
styreneform plate for canceling the aluminum weight. The
submergence depth of the submerged plate is 20mm and the
thickness is 20mm.

Fig. 6 shows the non-dimensionalized amplitudes of
deflections of VLFS with and without the submerged plate
obtained by the proposed method and experiments for the
wave periods Ty = 0.8 and 1.8 seconds. From this figure,
we can find that the submerged plate is available for
reducing the elastic response of the VLFS, especially for
the short wave periods. It is observed that the deflection is
decreased over the full length of VLFS in the short waves,
whereas only the weather side of VLFS is decreased in the
long waves. The comparisons of the results have shown a
good agreement between the numerical calculations and
experiments, and confirmed the reliability and accuracy of
the present method.

The amplitudes of diffraction pressure (I Pp I), radiation

pressure (l Pp |) and vertical displacement (| w|) on the
VLFS with and without the submerged plate are shown in
Figs. 7 and 8. Here, the non-dimensionalized values of

vertical displacement and pressure are made by using Sa

and PE%a, respectively. The distributions of pressure and
displacement without submerged plate are drawn on the
left, and the ones with submerged plate are on the right

side of the figure. The radiation pressure Pr is defined by

qr
P =§ —p,(xy)
frLg, (33)

From these Figs., it can be seen that the hydrodynamic
pressures are decreased due to the influence of submerged
plate. We can observe that the diffraction pressure at the
short wave period is almost zero inside the VLFS without
submerged plate but increase sharply near the weather side
(see Fig. 7a), and it is considerably reduced by the
submerged plate (see Fig. 7b). At the long wave period (see
Fig. 8), it is noted that the magnitude of decreased pressure
is smaller than that in the short wave period. According to
these results, we can see that the submerged plate has very
good performance for reduction of wave exciting force at the
weather side, and the effect of submerged plate is small at
the middle and lee side on the VLFS. Moreover, the
effectiveness of the submerged plate for the radiation
pressure is relatively small comparing with the diffraction
pressure. Therefore, it is considered that the submerged plate

is more effective for the short wave period and for the
reduction of wave exciting force. As clearly shown in the
figures, the elastic response of VLFS is drastically decreased
when the submerged plate is considered.

It is considered that the reduction of the elastic response
of VLFS in the short wave periods is due to the decrease
of wave exciting force, and the increase of damping force
induced by interaction effect between the VLFS and
submerged plate. On the other hand, the deflection of the
weather side in the long wave periods is decreased due to
the negative added mass on the submerged plate, and the
increase of added mass on the fore part of VLFS. The
results presented in this study demonstrate that the elastic
VLFS affected by the
hydrodynamic interaction induced by the submerged plate.

response of the is strongly

6. Conclusions

In this study, we have developed a modal analysis
method for predicting the waveinduced motion of a Very
Large Floating Structure considering the hydrodynamic
interaction effects between the VLFS and the submerged
Bi-cubic

discretizations of both structure deflection and pressure

plate. B-spline functions are used in the

distribution. Hydrodynamic pressures of the diffraction and

radiation problems are estimated by applying the modified
hydrodynamic coefficients. Through the present study we
obtained the following conclusions:

(1) The hydroelastic behaviors of VLFS with submerged
plate are analyzed by applying the modified hydrodynamic
coefficients. Namely, the wave exciting force is

decreased by the transmission wave coefficient while

the interaction factor is used for the modification of
radiation force. The comparisons of the results have
shown a good agreement between the numerical
calculations and experiments, and confirmed the
reliability and accuracy of the present method.

(2) It is considered that the reduction of the elastic
response of VLFS in short wave periods is due to the
decrease of wave exciting force, and the increase of
damping force induced by interaction effects between
the VLFS and the submerged plate. On the other hand,
the deflection of the weather side in long wave periods
is also decreased due to the reduction of wave exciting
force. Moreover, it is decreased due to the occurrence of
negative added mass on the submerged plate, and the
increase of added mass on the fore part of VLFS.

(3) The results presented in this study demonstrate that the

elastic response of the VLFS is strongly affected by the
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Without submerged plate With submerged plate
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Fig. 7 Distribution of diffraction pressure(upper), radiation pressure(middle) and displacement(lower) on VLFS (a)without
submerged plate and (b)with submerged plate
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Without submerged plate With submerged plate
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Fig. 8 Distribution of diffraction pressure(upper), radiation pressure(middle) and displacement(lower) on VLFS (a)without
submerged plate and (b)with submerged plate
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hydrodynamic interaction induced by the submerged
plate. As a result, we can confirm that the submerged
plate is useful for reducing the hydroelastic deflection of
VLFS, and the proposed method is valuable for
predicting the elastic response of VLFS with attached
submerged plate.
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