• Title/Summary/Keyword: Repeated structure

Search Result 607, Processing Time 0.024 seconds

Development of Biologically Active Compounds from Edible Plant Sources-IV. Isolation of Galactosyldiglyceride from the Allium monanthum Max. (식용 식물자원으로부터 활성물질의 탐색-IV. 달래(Allium monanthum Max.)로부터 Galactosyldiglyceridem의 분리)

  • 백남인;안은미;김해영;박영두;장영진;김세영
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.93-96
    • /
    • 2001
  • n-BuOH fraction obtained from MeOH extracts of Allium monanthum was applied to repeated silica gel column chromatographies to give a glycosylglyceride. The chemical structure of the compound was determined to be 1-O-linolenoyl-2-O-linolenoyl-3-O-$\beta$-D-galactopyranosyl-누-glycerol on the basis of NMR data and by the adaptation of chemical methods.

  • PDF

Fine Structure and Physical Properties of PEN Fiber with the Repeated Extension Fatigue (타이어코드용 PEN섬유의 반복신장 피로에 따른 미세구조와 물성)

  • 김명우;조현혹;박종범
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.91-94
    • /
    • 2001
  • Poly(ethylene 2,6-naphthalene dicarboxylate)(PEN)은 그 주사슬에 PET의 벤젠고리 대신 나프탈렌 고리로 치환된 구조로 인하여 PEN섬유는 내열성, 탄성계수(modulus), 형태안정성(dimensional stability), 내화학성 등에서 PET에 비해 우수한 장점을 갖고 있으며, 따라서 고온, 고습한 환경에서도 기계적 성질을 오랫동안 유지할 수 있다. (중략)

  • PDF

Measurement of load history of Kyoung-Bu line by using the diesel locomotive (디젤기관차를 이용한 경부선의 하중이력 측정)

  • 함영삼;서정원;오택열
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.652-659
    • /
    • 2000
  • The machine structure or parts has been arrive at a fracture, depend on crack by repeated load. Machine designer is estimate of fatigue strength in early stages the design for prevent fatigue fracture, then necessary its load history. This research study is using diesel locomotive in measurement of load history for fatigue design of rolling stock. The relation between velocity and amplitude of load history was found. We confirmed that the increase of velocity make to increase the magnitude of amplitude.

  • PDF

Synthesis and Analysis of Ge2Sb2Te5 Nanowire Phase Change Memory Devices

  • Lee, Jun-Yeong;Kim, Jeong-Hyeon;Jeon, Deok-Jin;Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.2-222.2
    • /
    • 2015
  • A $Ge_2Sb_2Te_5$ nanowire (GST NW) phase change memory device is investigated with Joule heating electrodes. GST is the most promising phase change materials, thus has been studied for decades but atomic structure transition in the phase-change area of single crystalline phase-change material has not been clearly investigated. We fabricated a phase change memory (PCM) device consisting of GST NWs connected with WN electrodes. The GST NW has switching performance with the reset/set resistance ratio above $10^3$. We directly observed the changes in atomic structure between the ordered hexagonal close packed (HCP) structure and disordered amorphous phase of a reset-stop GST NW with cross-sectional STEM analysis. Amorphous areas are detected at the center of NW and side areas adjacent to heating electrodes. Direct imaging of phase change area verified the atomic structure transition from the migration and disordering of Ge and Sb atoms. Even with the repeated phase transitions, periodic arrangement of Te atoms is not significantly changed, thus acting as a template for recrystallization. This result provides a novel understanding on the phase-change mechanism in single crystalline phase-change materials.

  • PDF

Evaluation of Stress Corrosion Strength According to Crystal Structure of 12Cr Alloy Steel Used Steam Turbine Blade (증기터빈 블레이드용 12Cr 합금강의 결정구조에 따른 응력부식강도 평가)

  • Kang, Yong-Ho;Bae, Dong-Ho;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.911-917
    • /
    • 2008
  • It was found that more than 60% of the steam turbine blade damages occurred under the condition alternatively repeated wet and dry of vapor and condensed vapor at the lower pressure stage. And also, it has been well known that both the mechanical properties and environmental strength of the steam turbine blade can be changed by the crystal structure. However, in spite of these common facts, it is difficult to find out the quantitative results including the particular environmental condition as well as the actual service conditions. In this study, as a fundamental investigation to provide design information and reliability evaluation of the 12Cr alloy steel used for a steam turbine blade, stress corrosion strength of the 12Cr alloy steel of which its crystal structure is different was assessed under $2.5{\sim}3.5wt.%$ NaCl solution at 90oC. From the results, S-t curves for predicting damage life and design criterion of the 12Cr alloy steel including corrosion environment as well as S.C.C. condition were obtained.

Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery (3D-foam 구조의 구리-주석 합금 도금층을 음극재로 사용한 리튬이온배터리의 전기화학적 특성 평가)

  • Jung, Minkyeong;Lee, Gibaek;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.

Sliding mode control for structures based on the frequency content of the earthquake loading

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • A control algorithm for seismic protection of building structures based on the theory of variable structural control or sliding mode control is presented. The paper focus in the design of sliding surface. A method for determining the sliding surface by pole assignment algorithm where the poles of the system in the sliding surface are obtained on-line, based on the frequency content of the incoming earthquake signal applied to the structure, is proposed. The proposed algorithm consists of the following steps: (i) On-line FFT process is applied to the incoming part of the signal and its frequency content is recognized. (ii) A transformation of the frequency content to the complex plane is performed and the desired location of poles of the controlled structure on the sliding surface is estimated. (iii) Based on the estimated poles the sliding surface is obtained. (iv) Then, the control force which will drive the response trajectory into the estimated sliding surface and force it to stay there all the subsequent time is obtained using Lyapunov stability theory. The above steps are repeated continuously for the entire duration of the incoming earthquake. The potential applications and the effectiveness of the improved control algorithm are demonstrated by numerical examples. The simulation results indicate that the response of a structure is reduced significantly compared to the response of the uncontrolled structure, while the required control demand is achievable.

Resin Flow Analysis of RTM Manufacturing Method for Design of Composite Fluid Storage Tank Structure (복합재료 유체 저장 탱크 구조 설계를 위한 RTM 공법 수지 유동 해석)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • In this study, resin flow analysis of resin transfer moulding (RTM) method was performed for mould design of composite structure. The target composite structure was a tank used for fluid storage. Natural c fiber composite was adopted for composite structural design of the fluid storage tank. RTM was adopted for manufacturing of the tank using natural fiber composites. Resin flow analysis was performed to find the proper RTM conditions of the tank. The resin flow analysis was performed using the commercial FEM flow simulation software. After repeated analysis while changing the location of resin inlet and outlet, the proper resin filling time and pattern were found.

Optimization of lateral resisting system of framed tubes combined with outrigger and belt truss

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this paper, the optimum location of the belt truss-outrigger for a combined system of framed tube, shear core and outrigger-belt truss is calculated. The optimum location is determined by maximization of the first natural frequency. The framed tube is modeled using a non-prismatic cantilever beam with hollow box cross section. The governing differential equation is solved using the weak form integral equations and the natural frequencies of the structure are calculated. The graphs are introduced for quick calculation of the first natural frequency. The location of the belt truss-outrigger that maximizes the first natural frequency of the structure is introduced as an optimum location. The structure is modeled using SAP-2000 finite elements software. In the modelling, the location of the belt truss-outrigger is changed along the height of the structure. With various locations of the outrigger, the lateral deflection of the all stories and axial force in the columns of the outer tube are calculated. The analysis is repeated by locating the outrigger-belt truss at the optimum location. The analysis results are compared and effect of the optimum location on the lateral deflection and the shear lag phenomena are investigated.

Novel Porous Materials Prepared by Repeated Directional Crystallization of Solvent (용매의 반복 방향성 결정화를 통해 제작된 새로운 다공성재료)

  • Kim, Hyun Jin;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.151-156
    • /
    • 2015
  • Herein, novel porous structures were fabricated from monomer solutions of dimethylsiloxane and benzene by directional crystallization in twice. First, a honeycomb-like structure was fabricated by $1^{st}$ directional crystallization of solvent. By infiltration of the solution and subsequent $2^{nd}$ directional crystallization, novel structures of different pores in the honeycomb-like structure were fabricated. The porous materials prepared by the repeated directional crystallization have higher indentation modulus and hardness than those of the samples prepared by single directional crystallization. When a higher solution concentration was used in $2^{nd}$ directional crystallization, the maximum increase (indentation modulus: 2140% increase, indentation hardness: 2330% increase) was obtained. On the other hand, porosity and contact angle were lower in the samples from $2^{nd}$ directional crystallization than those from $1^{st}$ directional crystallization. A large decreases was observed, when a relatively high concentration was used in $2^{nd}$ directional crystallization (porosity: 21% decrease, contact angle: 36% decrease).