DOI QR코드

DOI QR Code

Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery

3D-foam 구조의 구리-주석 합금 도금층을 음극재로 사용한 리튬이온배터리의 전기화학적 특성 평가

  • Jung, Minkyeong (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Gibaek (School of Chemical Engineering, Yeungnam University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 정민경 (인하대학교 화학.화학공학융합학과) ;
  • 이기백 (영남대학교 화학공학부) ;
  • 최진섭 (인하대학교 화학.화학공학융합학과)
  • Received : 2018.01.18
  • Accepted : 2018.02.23
  • Published : 2018.02.28

Abstract

Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.

Keywords

References

  1. P.G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 2930-2946. https://doi.org/10.1002/anie.200702505
  2. J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2009) 587-603.
  3. B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources 195 (2010) 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  4. M. Noel, R. Santhanam, Electrochemistry of graphite intercalation compounds, J. Power Sources 72 (1998) 53-65. https://doi.org/10.1016/S0378-7753(97)02675-X
  5. Y. Liang, J. Frisch, L. Zhi, H. Norouzi Arasi, X. Feng, J.P. Rabe, N. Koch and K. Mullen, Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules, Nanotechnology 20 (2009) 434007. https://doi.org/10.1088/0957-4484/20/43/434007
  6. M. Zhao, Q. Zhao, J. Qiu, H. Xue, H. Pang, Tin-based nanomaterials for electrochemical energy storage, RSC Adv. 6 (2016) 95449. https://doi.org/10.1039/C6RA19877E
  7. B. Wang, B. Luo, X. Li, L. Zhi, The dimensionality of Sn anodes in Li-ion batteries, Mater. Today 15 (2012) 544-552. https://doi.org/10.1016/S1369-7021(13)70012-9
  8. M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta 45 (1999) 31-50. https://doi.org/10.1016/S0013-4686(99)00191-7
  9. W.J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, J. Power Sources 196 (2011) 877-885. https://doi.org/10.1016/j.jpowsour.2010.08.114
  10. Y. Xie, C.Z. Wu, Design of nano architecture electrode materials applied in new-generation rechargeable lithium ion batteries, Dalton Trans. (2007) 5235-5240.
  11. J.H. Um, H. Park, Y.H. Cho, M.P.B. Glazer, D.C. Dun, H. Choe, Y.E. Sung, 3D interconnected $SnO_2$- coated Cu foam as a high-performance anode for lithium-ion battery applications, RSC Adv. 4 (2014) 58059. https://doi.org/10.1039/C4RA12297F
  12. L.Y. Beaulieu, S.D. Beattie, T.D. Hatchard, J.R. Dahn, The electrochemical reaction of lithium with tin studied by in situ AFM, J. Electrochem. Soc. 150 (2003) A419-A424. https://doi.org/10.1149/1.1556595
  13. J.O. Besenhard, J. Yang, M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?, J. Power Sources 68 (1997) 87-90. https://doi.org/10.1016/S0378-7753(96)02547-5
  14. H. Tian, F. Xin, X. Wang, W. He, W. Han, High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries, Journal of Materiomics 1 (2015) 153-169. https://doi.org/10.1016/j.jmat.2015.06.002
  15. K.D. Kepler, J.T. Vaughey, M.M. Thackeray, $Li_xCu_6Sn_5$(0 https://doi.org/10.1149/1.1390819
  16. G.X. Wang, L. Sun, D.H. Bradhurst, S.X. Dou, H.K. Liu, Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling, J. Alloys Compd. 299 (2000) L12-L15. https://doi.org/10.1016/S0925-8388(99)00804-X
  17. S.D. Beattie, J.R. Dahn, Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries, J. Electrochem. Soc. 150 (2003) A894-A898. https://doi.org/10.1149/1.1577336
  18. Y.L. Kim, H.Y. Lee, S.W. Jang, S.J. Lee, H.K. Baik, Y.S. Yoon, Y.S. Park, S.M. Lee, Nanostructured $Ni_3Sn_2$ thin film as anodes for thin film rechargeable lithium batteries, Solid State Ionics 160 (2003) 235-240. https://doi.org/10.1016/S0167-2738(03)00185-1
  19. H. Mukaido, T. Sumi, T. Yokoshima, T. Momma, T. Osaka, Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries, Electrochem. Solid-State Lett. 6 (2003) A218-A220. https://doi.org/10.1149/1.1602331
  20. Y. Xu, Optimizing Sn-based anode nanostructure and binder material for use in high-performance lithium-ion batteries, Master of philosophy thesis, Institute for superconducting & electronic materials, Univeristy of Wollongong, 2016.
  21. L. Xue, Z. Fu, Y. Yao, T. Huang, A. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochim. Acta 55 (2010) 7310-7314. https://doi.org/10.1016/j.electacta.2010.07.015
  22. J. Qin, X. Zhang, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Lia, C.N. He, Carbon-coated $Ni_3Sn_2$ nanoparticles embedded in porous carbon nanosheets as a lithium ion battery anode with outstanding cycling stability, RSC Adv. 4 (2014) 49247-49251. https://doi.org/10.1039/C4RA07520J
  23. D.H. Nam, R.H. Kim, D.W. Han, H.S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries, Electrochim. Acta 66 (2012) 126-132. https://doi.org/10.1016/j.electacta.2012.01.084
  24. H.C. Shin, M. Liu, Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater. 15 (2005) 582-586. https://doi.org/10.1002/adfm.200305165
  25. M. Haerifar, M. Zandrahimi, Effect of current density and electrolyte pH on microstructure of Mn-Cu electroplated coatings, Appl. Surf. Sci. 284 (2013) 126-132. https://doi.org/10.1016/j.apsusc.2013.07.049
  26. S.T. Chang, I.C. Leu, M.H. Hon, Preparation and characterization of nanostructured tin oxide films by electrochemical deposition, Electrochem. Solid-State Lett. 5 (2002) C71-C74. https://doi.org/10.1149/1.1485808
  27. O. Akhavan, R. Azimirad, S. Safa, E. Hasani, $CuO/Cu(OH)_2$ hierarchical nanostructures as bactericidal photocatalysts, J. Mater. Chem. 21 (2011) 9634-9640. https://doi.org/10.1039/c0jm04364h
  28. M. Jung, G. Lee, J. Choi, Electrochemical plating of Cu-Sn alloy in non-cyanide solution to substitute for Ni undercoating layer, Electrochim. Acta 241 (2017) 229-236. https://doi.org/10.1016/j.electacta.2017.04.170
  29. X. Wang, Z. Li, Q. Li, C. Wang, A. Chen, Z. Zhang, R. Fan, L. Yin, Ordered mesoporous $SnO_2$ with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance, CrystEngComm 15 (2013) 3696-3704. https://doi.org/10.1039/c3ce40087e
  30. G. Zhou, D.W. Wang, L. Li, N. Li, F. Li, H.M. Cheng, Nanosize $SnO_2$ confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage, Nanoscale 5 (2013) 1576-1582. https://doi.org/10.1039/c2nr33482h