DOI QR코드

DOI QR Code

Resin Flow Analysis of RTM Manufacturing Method for Design of Composite Fluid Storage Tank Structure

복합재료 유체 저장 탱크 구조 설계를 위한 RTM 공법 수지 유동 해석

  • Park, Hyunbum (Dept. of Defense Science & Technology-Aeronautics, Howon University)
  • 박현범 (호원대학교 국방과학기술학부 항공시스템공학 전공)
  • Received : 2018.10.23
  • Accepted : 2019.01.02
  • Published : 2019.02.28

Abstract

In this study, resin flow analysis of resin transfer moulding (RTM) method was performed for mould design of composite structure. The target composite structure was a tank used for fluid storage. Natural c fiber composite was adopted for composite structural design of the fluid storage tank. RTM was adopted for manufacturing of the tank using natural fiber composites. Resin flow analysis was performed to find the proper RTM conditions of the tank. The resin flow analysis was performed using the commercial FEM flow simulation software. After repeated analysis while changing the location of resin inlet and outlet, the proper resin filling time and pattern were found.

본 연구에서 복합재료 구조 설계를 위한 수지 이송 성형 공법의 수지 침투 유동 해석을 수행하였다. 대상 복합재료 구조물은 유체 저장 탱크 구조물이다. 유체 저장 탱크 복합재료 구조물 설계를 위해 자연 섬유 복합재료가 적용되었다. 자연섬유 복합재 구조의 제작을 위해 수지 이송 성형 공법을 채택하였다. 탱크의 적절한 RTM 조건을 도출하기 위하여 수지 침투 유동 해석을 수행하였다. 수지 유동 해석은 상용 유한 요소 해석 시뮬레이션 프로그램을 활용하여 수행하였다. 수지 주입구와 배출구의 다양한 변경에 따른 반복적 해석을 수행하여 최적의 수지 주입 시간과 위치를 결정하였다.

Keywords

OJSSBW_2019_v13n1_69_f0001.png 이미지

Fig. 1 Hydraulic Pressure vs Tank Height

OJSSBW_2019_v13n1_69_f0002.png 이미지

Fig. 2 Designed Configuration of Tank for Fluid Storage

OJSSBW_2019_v13n1_69_f0003.png 이미지

Fig. 3 Finite Element Modeling for Tank Analysis

OJSSBW_2019_v13n1_69_f0004.png 이미지

Fig. 4 Stress Analysis Result of Tank for Fluid Storage

OJSSBW_2019_v13n1_69_f0005.png 이미지

Fig. 5 Resin Flow Analysis Result of Permeability Test and Analysis

OJSSBW_2019_v13n1_69_f0006.png 이미지

Fig. 6 Modelling of Tank Lower Part for Resin Flow Analysis

OJSSBW_2019_v13n1_69_f0007.png 이미지

Fig. 7 Resin Flow Analysis Result of Case 1(Filling Time)

OJSSBW_2019_v13n1_69_f0008.png 이미지

Fig. 8 Resin Flow Analysis Result of Case 2(Filling Time)

OJSSBW_2019_v13n1_69_f0009.png 이미지

Fig. 9 Resin Flow Analysis Result of Case 3(Filling Time)

OJSSBW_2019_v13n1_69_f0010.png 이미지

Fig. 10 Surface Treatment of Master Model

OJSSBW_2019_v13n1_69_f0011.png 이미지

Fig. 11 Application on Gel Coat of Surface

OJSSBW_2019_v13n1_69_f0012.png 이미지

Fig. 12 Lamination of Glass Composite for Mould Manufacturing

OJSSBW_2019_v13n1_69_f0013.png 이미지

Fig. 13 Manufactured Mould of Tank

OJSSBW_2019_v13n1_69_f0014.png 이미지

Fig. 14 Flax Fiber Lamination of Tank Lower Part

OJSSBW_2019_v13n1_69_f0015.png 이미지

Fig. 15 Manufactured Prototype

Table 1 Mechanical Properties of Flax/vinyl Ester Specimen (Fiber Volume Fraction: 51%)

OJSSBW_2019_v13n1_69_t0001.png 이미지

Table 2 Resin Flow Analysis Parameter

OJSSBW_2019_v13n1_69_t0002.png 이미지

Table 3 RTM Resin Flow Analysis Cases

OJSSBW_2019_v13n1_69_t0003.png 이미지

Table 4 Adhesive Specification (ISR 70-05 AP)

OJSSBW_2019_v13n1_69_t0004.png 이미지

References

  1. H. Lee, "Study on Structural Optimization of an Automobile Hood using Natural Fiber Composite," Ph.D Thesis, Chosun University, Rep. of Korea, 2016.
  2. Fu, Y., Xiong, J., Luo, C., Yun, X., "Static Mechanical Properties of Hybrid RTM-made Composite I- and Π-beams under Three-point flexure," Chinese Journal of Aeronautics, Vol. 28, pp. 903-913, 2015. https://doi.org/10.1016/j.cja.2015.03.004
  3. Bodaghi, M., Cristovao, C., Gomes, R., Correia, N. C., "Experimental Characterization of Voids in High Fibre Volume Fraction Composites Processed by High Injection Pressure RTM," Composites Part A: Applied Science and Manufacturing, Vol. 82, pp. 88-99, 2016. https://doi.org/10.1016/j.compositesa.2015.11.042
  4. Bai, J. B., Shenoi, R. A., Yun, X. Y., Xiong, J. J., "Progressive Damage Modelling of Hybrid RTM-made Composite $\Pi$-joint under Four-point Flexure using Mixed Failure Criteria," Composites Structures, Vol. 159, pp. 327-334, 2017. https://doi.org/10.1016/j.compstruct.2016.09.083
  5. He, D., Salem, D., C, J., P., G. P., B, J., "Impact of the Spatial Distribution of High Content of Carbon Nanotubes on the Electrical Conductivity of Glass Fiber Fabrics/epoxy Composites Fabricated by RTM Technique," Composites Science and Technology, Vol. 147, pp. 107-115, 2017. https://doi.org/10.1016/j.compscitech.2017.05.012
  6. Han, S. H., Cho, E. J., Lee, H. C., Jeong, Kun., Kim, S. S., "Study on High-speed RTM to Reduce the Impregnation Time of Carbon/epoxy Composites," Composites Structures, Vol. 119, pp. 50-58, 2015. https://doi.org/10.1016/j.compstruct.2014.08.023
  7. Park, S. K., Kim, C. H., Choi, J. H., "A Study on Cure Monitoring of Fast Cure Resin RTM Process Using Dielectrometry", Composites Research, Vol. 30, pp. 202-208, 2017. https://doi.org/10.7234/composres.2017.30.3.202
  8. Ahn, J. M., Seong, D. G., Lee, W. H., Um, M. K., Choi, J.H., "A Study on Slip Behavior of Fiber Preform by High Speed Resin Flow in High Pressure Resin Transfer Molding," Composites Research, Vol. 27, pp. 31-36, 2014. https://doi.org/10.7234/composres.2014.27.1.031
  9. Park, H. B., "Investigation on Mechanical Properties of Natural-Fiber Composite Manufactured using VARTM Method," Journal of Aerospace System Engineering, Vol. 10, No. 3, pp. 59-62, 2016. https://doi.org/10.20910/JASE.2016.10.3.59
  10. Kong, C. D., Park, H. B., Lee, J. W., "Study on Structural Design and Analysis of Fax Natural Fiber Composite Tank Manufactured by Vacuum Assisted Resin Transfer Molding," Materials Letters, Vol. 130, pp. 21-25, 2014. https://doi.org/10.1016/j.matlet.2014.05.042
  11. Park, H. B., Kong, C. D., Lee, J. H., Kim, I. G., Lee., H, Y., "Investigation on Mechanical Properties of Flax/Vinyl Ester Natural Fiber Composite," Composites Research, Vol. 27, No. 1, pp. 19-24, 2014. https://doi.org/10.7234/composres.2014.27.1.019
  12. Jeong, J. W., Lee, B. S., Kang, B. Y., Han, K. S., Su, S. B., "Study of Laminating Strategy for FRP Hull Using Resin Infusion Simulation," Journal of Ocean Engineering and Technology, Vol. 23, No. 2, pp. 98-103, 2009.