• Title/Summary/Keyword: Reliability based Design Optimization

Search Result 277, Processing Time 0.027 seconds

A Study on Reliability Based Design Optimization For Thin Walled Beam Structures (박판보 구조물의 신뢰성 최적 설계에 관한 연구)

  • Lee, Sun-Byung;Yim, Hong-Jae;Baik, Serl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.414-419
    • /
    • 2001
  • In this research, reliability based optimum design is presented for the thin walled beam structures. Deterministic and stochastic optimum design are compared for the thin walled beam structures. Monte Carlo simulation is used for stochastic optimum design with consideration of probabilistic distribution of representative section properties of the thin walled beams with the Response Surface Method.

  • PDF

Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations

  • Hadidi, Ali;Azar, Bahman Farahmand;Rafiee, Amin
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.701-721
    • /
    • 2016
  • Base isolation is a well-established passive strategy for seismic response control of buildings. In this paper, an efficient framework is proposed for reliability-based design optimization (RBDO) of isolated buildings subjected to uncertain earthquakes. The framework uses reduced function evaluations method, as an efficient tool for structural reliability analysis, and an efficient optimization algorithm for optimal structural design. The probability of failure is calculated considering excessive base displacement, superstructure inter-storey drifts, member stress ratios and absolute accelerations of floors of the isolated building as failure events. The behavior of rubber bearing isolators is modeled using nonlinear hysteretic model and the variability of future earthquakes is modeled by applying a probabilistic approach. The effects of pulse component of stochastic near-fault ground motions, fixity-factor of semi-rigid beam-to-column connections, values of isolator parameters, earthquake magnitude and epicentral distance on the performance and safety of semi-rigidly connected base-isolated steel framed buildings are studied. Suitable RBDO examples are solved to illustrate the results of investigations.

Robust Design Methodology of a Coupled System (연성 시스템의 강건설계 방법)

  • Lee, Kwon-Hee;Park, Gyung-Jin;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

Development of the Design Process for Laser Scanned Model (레이저 스캔 모델의 설계 프로세스 개발)

  • Kim, Chwa-Il;Wang, Se-Myung;Kang, Eui-Chul;Lee, Kwan-Heng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1029-1034
    • /
    • 2004
  • Recent engineering process requires fast development and manufacturing of the products. This paper mainly discusses the process of rapid product development (RPD) from the reverse engineering to the optimal design. A laser scanning system scans a product and the efficient data processing method reduces the scanned point data. The reduced (scanned) points model is transformed to a finite element model without the construction of a CAD model. Since CAD modeling is a time-consuming work, skipping this step can save much time. This FE model is updated from the result based on the structural characteristics from modal test of the real model. For FE model updating, Response Surface Method is adopted. Finally, the updated FE model is optimized using the reliability-based topology optimization, which is developed recently. All these processes are applied to the design of an upper part model of a cellular phone.

  • PDF

Advance Probabilistic Design and Reliability-Based Design Optimization for Composite Sandwich Structure (복합재 샌드위치 구조의 개선된 확률론적 설계 및 신뢰성 기반 최적설계)

  • Lee, Seokje;Kim, In-Gul;Cho, Wooje;Shul, Changwon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Composite sandwich structure can improve the specific bending stiffness significantly and save the weight nearly 30 percent compared with the composite laminates. However, it has more inherent uncertainties of the material property caused by manufacturing process than metals. Therefore, the reliability-based probabilistic design approach is required. In this paper, the PMS(Probabilistic Margin of Safety) is calculated for the simplified fuselage structure made of composite sandwich to provide the probabilistic reasonable evidence that the classical design method based on the safety factor cannot ensure the structural safety. In this phase, the probability density function estimated by CMCS(Crude Monte-Carlo Simulation) is used. Furthermore, the RBDO(Reliability-Based Design Optimization) under the probabilistic constraint are performed, and the RBDO-MPDF(RBDO by Moving Probability Density Function) is proposed for an efficient computation. The examined results in this paper can be helpful for advanced design techniques to ensure the reliability of structures under the uncertainty and computationally inexpensive RBDO methods.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Design Optimization of Blast Resistant CFRP-steel Composite Structure Based on Reliability Analysis (신뢰성 해석에 의한 내폭 CFRP-steel 복합구조의 최적화 설계)

  • Kim, Jung Joong;Noh, Hyuk-Chun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.10-16
    • /
    • 2012
  • This study presents the effectiveness of a composite structure at improving blast resistance. The proposed composite structure consists of carbon fiber reinforced polymer (CFRP) and steel layers. While CFRP layer is used for blast energy reflection due to its high strength, steel layer is used for blast energy absorption due to its high ductility. A dynamic model is used to simulate the elastoplastic behavior of the proposed composite structure subject to blast load. Considering the magnitude variations of a blast event, the probability of failure of each layer is evaluated using reliability analysis. By assigning design probability of failure of each layer in the composite structure, the thickness of layers is optimized. A case study for the design of CFRP-steel composite structure subjected to an uncertain blast event is also presented.