DOI QR코드

DOI QR Code

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung (Department of Architectural Engineering, Sejong University) ;
  • Thanh T. Banh (Department of Architectural Engineering, Sejong University) ;
  • Nam G. Luu (Department of Architectural Engineering, Sejong University) ;
  • Dongkyu Lee (Department of Architectural Engineering, Sejong University)
  • Received : 2021.09.02
  • Accepted : 2023.05.03
  • Published : 2023.06.10

Abstract

This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

Keywords

Acknowledgement

This research was supported by and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776).

References

  1. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  2. Allaire, G., Gournay, F., Jouve, F. and Toader, A.M. (2005), "Structural optimization using topological and shape sensitivity via a level set method", Control Cybernet., 34(1), 59-80. http://eudml.org/doc/209353
  3. Allaire, G., Jouve F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), https://doi.org/10.1016/j.jcp.2003.09.032.
  4. Aminbaghai, J., Murin, J. and Kutis, V. (2012), "Modal analysis of the FGM-beams with continuous transversal symmetric and longitudinal variation of material properties with effect of large axial force", Eng. Struct., 34, 314-329. https://doi.org/10.1016/j.engstruct.2011.09.022.
  5. Arslan, K. and Gunes, R. (2018), "Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads", Compos. Struct., 202, 304-312. https://doi.org/10.1016/j.compstruct.2018.01.087.
  6. Banh, T.T., Lieu, Q.X., Lee, J., Kang, J. and Lee, D.K. (2023), "A robust dynamic unified multi-material topology optimization method for functionally graded structures", Struct. Multidisc. Optim., 66, 75. https://doi.org/10.1007/s00158-023-03501-3.
  7. Banh, T.T., Nam, G.L. and Lee, D.K. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273(24), 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
  8. Banh, T.T., Xuan, Q.N., Herrmann, M., Filippou, F.C. and Lee, D.K. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. http://dx.doi.org/10.12989/scs.2020.35.1.129.
  9. Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M. and Abbas, A.B.E. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001.
  10. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optimiz., 1(4), 193-202. https://doi.org/10.1007/BF01650949.
  11. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comp. Methods Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
  12. Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vib., 295(1-2), 294-316. https://doi.org/10.1016/j.jsv.2006.01.026.
  13. Buhmann, M.D. (2004), Radial Basis Functions: Theory and Implementations, Volume 12, Cambridge University Press, New York, NY, USA.
  14. Calio, I. and Elishakoff, I. (2005), "Closed-form solutions for axially graded beam-columns", J. Sound Vib., 280(3-5), 1083-1094. https://doi.org/10.1016/j.jsv.2004.02.018.
  15. Chau, K.N., Chau, K.N., Ngo, T., Hackl, K. and Nguyen, X.H. (2018), "A polytree-based adaptive polygonal finite element method for multi-material topology optimization", Comp. Methods Appl. Mech. Eng., 332, 712-739. https://doi.org/10.1016/j.cma.2017.07.035.
  16. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.
  17. Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068.
  18. Gu, P. and Asaro, R.J. (1997), "Crack deflection in functionally graded materials", Int. J. Solid. Struct., 34, 3085-3098. https://doi.org/10.1016/S0020-7683(96)00175-8.
  19. Hoang, V.N., Pham, T., Ho, D. and Nguyen, X.H (2021a), "Robust multiscale design of incompressible multi-materials under loading uncertainties", Eng. Comp., 38, 875-890. https://doi.org/10.1007/s00366-021-01372-0.
  20. Hoang, V.N., Pham, T., Tangramvong, S., Bordas, S.P.A. and Nguyen, X.J. (2021b), "Robust adaptive topology optimization of porous infills under loading uncertainties", Struct. Multidisc. Optim., 63, 2253-2266. https://doi.org/10.1007/s00158-020-02800-3.
  21. Ilschner, B. (1996), "Processing-microstructure-property relationships in graded materials", J. Mech. Phys. Solid., 44, 647-656. https://doi.org/10.1016/0022-5096(96)00023-3.
  22. Islam, S.U., Khan, W., Ullah, B. and Ullah, Z. (2020), "The localized radial basis functions for parameterized level set based structural optimization", Eng. Anal. Bound. Elem., 113, 296-305. https://doi.org/10.1016/j.enganabound.2020.01.008.
  23. Jiang, Y.T. and Zhao, M. (2020), "Topology optimization under design-dependent loads with the parameterized level-set method based on radial-basis functions", Comp. Meth. Appl. Mech. Eng., 369, 113235. https://doi.org/10.1016/j.cma.2020.113235.
  24. Kim, J.H. and Paulino, G.H. (2002), "Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials", J. Appl. Mech., 69(4), 502-514. https://doi.org/10.1115/1.1467094.
  25. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  26. Kumar, R., Lal, A., Singh B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curved Layered Struct., 6(1), 192-211. https://doi.org/10.1515/cls-2019-0017.
  27. Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aerosp. Sci. Tech., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006.
  28. Lieu, Q.X. and Lee, J. (2019), "A reliability-based optimization approach for material and thickness composition of multidirectional functionally graded plates", Compos. Part B: Eng., 166, 273-287. https://doi.org/10.1016/j.compositesb.2019.01.089.
  29. Lieu, Q. X., Lee, S., Kang, J. and Lee, J. (2018), "Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis", Compos. Struct., 192. 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
  30. Lieu, Q.X. and Lee, J. (2018), "An isogeometric multimesh design approach for size and shape optimization of multidirectional functionally graded plates", Comput. Methods Appl. Mech. Eng., 343, 407-437. https://doi.org/10.1016/j.cma.2018.08.017.
  31. Liu, H., Zhong, H.M., Tian, Y., Ma, Q.P. and Wang, M.Y. (2019), "A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design", Struct. Multidiscip. Optimiz., 60, 2221-2247. https://doi.org/10.1007/s00158-019-02318-3.
  32. Liu, T., Li, B., Wang, S.Y. and Gao, L. (2014), "Eigenvalue topology optimization of structures using a parameterized level set method", Struct. Multidiscip. Optimiz., 50, 573-591. https://doi.org/10.1007/s00158-014-1069-z.
  33. Luo, Z., Tong, L.Y., Wang, M.Y. and Wang, S.Y. (2007), "Shape and topology optimization of compliant mechanisms using a parameterization level set method", Comp. Modeling Eng. Sci., 227, 680-705. https://doi.org/10.1016/j.jcp.2007.08.011.
  34. Mehmet, A. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  35. Morse, B.S., Yoo, T.S., Chen, D.T., Rheingans, P. and Subramanian, K.R. (2001), "Interpolating implicit surfaces from scattered surface data using compactly supported radial basic functions", IEEE Int. Conf. Shape Modeling Appl., 15, 89-98. https://doi.org/10.1109/SMA.2001.923379.
  36. Murin, J., Aminbaghai, M., Hrabovsky, J., Gogola, R. and Kugler, S. (2016), "Beam finite element for modal analysis of FGM structures", Eng. Struct., 121, 1-18. https://doi.org/10.1016/j.engstruct.2016.04.042.
  37. Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V. and Kugler, S. (2013a), "Modal analysis of the FGM beams with effect of the shear correction function", Compos. Part B: Eng., 45(1), 1575-1582. https://doi.org/10.1016/j.compositesb.2012.09.084.
  38. Murin, J., Aminbaghai, M., Kutis, V. and Hrabovsky, J. (2013b), "Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation", Eng. Struct., 49, 234-247. https://doi.org/10.1016/j.engstruct.2012.09.039.
  39. Nguyen, X.H., Liu, G.R., Bordas, S., Natarajan, S. and Rabczuk, T. (2013), "An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order", Comp. Methods Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017.
  40. Osher, S. and Santosa, F. (2001), "Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum", J. Comput. Phys., 171(1), 272-288. https://doi.org/10.1006/jcph.2001.6789.
  41. Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2.
  42. Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, M. (1999), "A PDE-based fast local level set method", J. Comput. Phys., 155, 410-438. https://doi.org/10.1006/jcph.1999.6345.
  43. Querin, O.M., Steven, G.P. and Xie, Y.M. (1998), "Evolutionary structural optimisation (ESO) using a bidirectional algorithm", Eng. Comput., 15(8), 1031-1048. https://doi.org/10.1108/02644409810244129.
  44. Radhika, N., Kamireddy, T., Kanithi, R. and Shivashankar, A. (2018), "Fabrication of Cu-Sn-Ni /SiC FGM for automotive applications: investigation of its mechanical and tribological properties", Environ. Sci. Pollut. Res., 102, 1705-1716. https://doi.org/10.1007/s12633-017-9657-3.
  45. Sethian, J.A. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163(2), 489-528. https://doi.org/10.1006/jcph.2000.6581.
  46. Sha, W., Xiao, M., Gao, L. and Zhang, Y. (2021), "A new level set based multi-material topology optimization method using alternating active-phase algorithm", Comp. Methods Appl. Mech. Eng., 377, 113674. https://doi.org/10.1016/j.cma.2021.113674.
  47. Shoberi, V. (2015), "The topology optimization design for cracked structures", Eng. Anal. Bound. Elem., 58, 26-38. https://doi.org/10.1016/j.enganabound.2015.03.002.
  48. Simsek, M. and Al-shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B: Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.
  49. Smith, J.A., Mele, E., Rimington, R.P., Capel, A.J., Lewis, M.P., Silberschmidt, V.V. and Li, S. (2019), "Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications", J. Mech. Behav. Biomed. Mater., 93, 130-142. https://doi.org/10.1016/j.jmbbm.2019.02.012.
  50. Taheri, A.H. and Hassani, B. (2014), "Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies", Comp. Methods Appl. Mech. Eng., 277, 46-80. https://doi.org/10.1016/j.cma.2014.04.014.
  51. Wang, M.Y. and Wang, X.M. (2004a), "Color level sets: a multiphase method for structural topology optimization with multiple materials", Comp. Methods Appl. Mech. Eng., 193, 469-496. https://doi.org/10.1016/j.cma.2003.10.008.
  52. Wang, M.Y. and Wang, X.M. (2004b), "PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization", Comp. Modeling Eng. Sci., 6(4), 373-396. https://doi.org/10.3970/cmes.2004.006.373.
  53. Wang, M.Y. and Zhou, S.W. (2004c), "Synthesis of shape and topology of multi-material structures with a phase-field method", J. Comput-aid. Mater. Des., 11, 117-138. https://doi.org/10.1007/s10820-005-3169-y.
  54. Wang, M.Y., Wang, X.M. and Guo, D.M. (2004d), "Structural shape and topology optimization in a level-set-based framework of region representation", Struct. Multidiscip. Optimiz., 27, 1-19. https://doi.org/10.1007/s00158-003-0363-y.
  55. Wang, M.Y., Wang, X. and Guo D.M. (2003), "A level set method for structural topology optimization", Comput. Methods Appl. Mech. Eng., 192, 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.
  56. Wang, S.Y. and Wang, M.Y. (2006a), "Radial basis functions and level set method for structural topology optimization", Int. J. Numer. Methods Eng., 65, 2060-2090. https://doi.org/10.1002/nme.1536.
  57. Wang, S.Y. and Wang, M.Y. (2006b), "Structural shape and topology optimization using an implicit free boundary parametrization method", Comp. Modeling Eng. Sci., 13(2), 119-147. https://doi.org/10.3970/cmes.2006.013.119.
  58. Wei, P. and Paulino, G.H. (2020), "A parameterized level set method combined with polygonal finite elements in topology optimization", Struct. Multidiscip. Optimiz., 61, 1913-1928. https://doi.org/10.1007/s00158-019-02444-y.
  59. Wei, P., Li, Z., Li, Z.P. and Wang, M.Y. (2018), "An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions", Struct. Multidiscip. Optimiz., 58, 831-849. https://doi.org/10.1007/s00158-018-1904-8.
  60. Wei, P., Wang, M.Y. and Xing, X.H. (2010), "A study on X-FEM in continuum structural optimization using a level set model", Comput-aid. Des., 42, 708-719. https://doi.org/10.1016/j.cad.2009.12.001.
  61. Wu, L., Wang, Q.S. and Elishakoff, I. (2005), "Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode", J. Sound Vib., 284(3-5), 1190-1202. https://doi.org/10.1016/j.jsv.2004.08.038.
  62. Xia, Q., Shi, T.L. and Wang, M.Y. (2011), "A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration", Struct. Multidiscip. Optimiz., 43, 473-485. https://doi.org/10.1007/s00158-010-0595-6.
  63. Xia, Q., Shi, T.L., Liu, S.Y. and Wang, M.Y. (2012), "A level set solution to the stress-based structural shape and topology optimization", Comp. Struct., 90-91, 55-64. https://doi.org/10.1016/j.compstruc.2011.10.009.
  64. Xia, Q., Wang, M.Y. and Shi, T.L. (2014), "A level set method for shape and topology optimization of both structure and support of continuum structures", Comp. Methods Appl. Mech. Eng., 272, 340-353. https://doi.org/10.1016/j.cma.2014.01.014.
  65. Xia, Q., Wang, M.Y. and Shi, T.L. (2015), "Topology optimization with pressure load through a level set method", Comp. Methods Appl. Mech. Eng., 283, 177-195. https://doi.org/10.1016/j.cma.2014.01.014.
  66. Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B: Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005.
  67. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comp. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C.
  68. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.
  69. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
  70. Zhang, W., Feng, Z. and Cao, D. (2012), "Nonlinear dynamics analysis of aero engine blades", J. Dyn. Control, 10, 213-221. https://doi.org/10.1109/UKSIM.2011.48.