Acknowledgement
This research was supported by and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776).
References
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Allaire, G., Gournay, F., Jouve, F. and Toader, A.M. (2005), "Structural optimization using topological and shape sensitivity via a level set method", Control Cybernet., 34(1), 59-80. http://eudml.org/doc/209353
- Allaire, G., Jouve F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), https://doi.org/10.1016/j.jcp.2003.09.032.
- Aminbaghai, J., Murin, J. and Kutis, V. (2012), "Modal analysis of the FGM-beams with continuous transversal symmetric and longitudinal variation of material properties with effect of large axial force", Eng. Struct., 34, 314-329. https://doi.org/10.1016/j.engstruct.2011.09.022.
- Arslan, K. and Gunes, R. (2018), "Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads", Compos. Struct., 202, 304-312. https://doi.org/10.1016/j.compstruct.2018.01.087.
- Banh, T.T., Lieu, Q.X., Lee, J., Kang, J. and Lee, D.K. (2023), "A robust dynamic unified multi-material topology optimization method for functionally graded structures", Struct. Multidisc. Optim., 66, 75. https://doi.org/10.1007/s00158-023-03501-3.
- Banh, T.T., Nam, G.L. and Lee, D.K. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273(24), 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Banh, T.T., Xuan, Q.N., Herrmann, M., Filippou, F.C. and Lee, D.K. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. http://dx.doi.org/10.12989/scs.2020.35.1.129.
- Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M. and Abbas, A.B.E. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001.
- Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optimiz., 1(4), 193-202. https://doi.org/10.1007/BF01650949.
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comp. Methods Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vib., 295(1-2), 294-316. https://doi.org/10.1016/j.jsv.2006.01.026.
- Buhmann, M.D. (2004), Radial Basis Functions: Theory and Implementations, Volume 12, Cambridge University Press, New York, NY, USA.
- Calio, I. and Elishakoff, I. (2005), "Closed-form solutions for axially graded beam-columns", J. Sound Vib., 280(3-5), 1083-1094. https://doi.org/10.1016/j.jsv.2004.02.018.
- Chau, K.N., Chau, K.N., Ngo, T., Hackl, K. and Nguyen, X.H. (2018), "A polytree-based adaptive polygonal finite element method for multi-material topology optimization", Comp. Methods Appl. Mech. Eng., 332, 712-739. https://doi.org/10.1016/j.cma.2017.07.035.
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.
- Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068.
- Gu, P. and Asaro, R.J. (1997), "Crack deflection in functionally graded materials", Int. J. Solid. Struct., 34, 3085-3098. https://doi.org/10.1016/S0020-7683(96)00175-8.
- Hoang, V.N., Pham, T., Ho, D. and Nguyen, X.H (2021a), "Robust multiscale design of incompressible multi-materials under loading uncertainties", Eng. Comp., 38, 875-890. https://doi.org/10.1007/s00366-021-01372-0.
- Hoang, V.N., Pham, T., Tangramvong, S., Bordas, S.P.A. and Nguyen, X.J. (2021b), "Robust adaptive topology optimization of porous infills under loading uncertainties", Struct. Multidisc. Optim., 63, 2253-2266. https://doi.org/10.1007/s00158-020-02800-3.
- Ilschner, B. (1996), "Processing-microstructure-property relationships in graded materials", J. Mech. Phys. Solid., 44, 647-656. https://doi.org/10.1016/0022-5096(96)00023-3.
- Islam, S.U., Khan, W., Ullah, B. and Ullah, Z. (2020), "The localized radial basis functions for parameterized level set based structural optimization", Eng. Anal. Bound. Elem., 113, 296-305. https://doi.org/10.1016/j.enganabound.2020.01.008.
- Jiang, Y.T. and Zhao, M. (2020), "Topology optimization under design-dependent loads with the parameterized level-set method based on radial-basis functions", Comp. Meth. Appl. Mech. Eng., 369, 113235. https://doi.org/10.1016/j.cma.2020.113235.
- Kim, J.H. and Paulino, G.H. (2002), "Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials", J. Appl. Mech., 69(4), 502-514. https://doi.org/10.1115/1.1467094.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Kumar, R., Lal, A., Singh B.N. and Singh, J. (2019), "Meshfree approach on buckling and free vibration analysis of porous FGM plate with proposed IHHSDT resting on the foundation", Curved Layered Struct., 6(1), 192-211. https://doi.org/10.1515/cls-2019-0017.
- Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aerosp. Sci. Tech., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006.
- Lieu, Q.X. and Lee, J. (2019), "A reliability-based optimization approach for material and thickness composition of multidirectional functionally graded plates", Compos. Part B: Eng., 166, 273-287. https://doi.org/10.1016/j.compositesb.2019.01.089.
- Lieu, Q. X., Lee, S., Kang, J. and Lee, J. (2018), "Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis", Compos. Struct., 192. 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
- Lieu, Q.X. and Lee, J. (2018), "An isogeometric multimesh design approach for size and shape optimization of multidirectional functionally graded plates", Comput. Methods Appl. Mech. Eng., 343, 407-437. https://doi.org/10.1016/j.cma.2018.08.017.
- Liu, H., Zhong, H.M., Tian, Y., Ma, Q.P. and Wang, M.Y. (2019), "A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design", Struct. Multidiscip. Optimiz., 60, 2221-2247. https://doi.org/10.1007/s00158-019-02318-3.
- Liu, T., Li, B., Wang, S.Y. and Gao, L. (2014), "Eigenvalue topology optimization of structures using a parameterized level set method", Struct. Multidiscip. Optimiz., 50, 573-591. https://doi.org/10.1007/s00158-014-1069-z.
- Luo, Z., Tong, L.Y., Wang, M.Y. and Wang, S.Y. (2007), "Shape and topology optimization of compliant mechanisms using a parameterization level set method", Comp. Modeling Eng. Sci., 227, 680-705. https://doi.org/10.1016/j.jcp.2007.08.011.
- Mehmet, A. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Morse, B.S., Yoo, T.S., Chen, D.T., Rheingans, P. and Subramanian, K.R. (2001), "Interpolating implicit surfaces from scattered surface data using compactly supported radial basic functions", IEEE Int. Conf. Shape Modeling Appl., 15, 89-98. https://doi.org/10.1109/SMA.2001.923379.
- Murin, J., Aminbaghai, M., Hrabovsky, J., Gogola, R. and Kugler, S. (2016), "Beam finite element for modal analysis of FGM structures", Eng. Struct., 121, 1-18. https://doi.org/10.1016/j.engstruct.2016.04.042.
- Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V. and Kugler, S. (2013a), "Modal analysis of the FGM beams with effect of the shear correction function", Compos. Part B: Eng., 45(1), 1575-1582. https://doi.org/10.1016/j.compositesb.2012.09.084.
- Murin, J., Aminbaghai, M., Kutis, V. and Hrabovsky, J. (2013b), "Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation", Eng. Struct., 49, 234-247. https://doi.org/10.1016/j.engstruct.2012.09.039.
- Nguyen, X.H., Liu, G.R., Bordas, S., Natarajan, S. and Rabczuk, T. (2013), "An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order", Comp. Methods Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017.
- Osher, S. and Santosa, F. (2001), "Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum", J. Comput. Phys., 171(1), 272-288. https://doi.org/10.1006/jcph.2001.6789.
- Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2.
- Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, M. (1999), "A PDE-based fast local level set method", J. Comput. Phys., 155, 410-438. https://doi.org/10.1006/jcph.1999.6345.
- Querin, O.M., Steven, G.P. and Xie, Y.M. (1998), "Evolutionary structural optimisation (ESO) using a bidirectional algorithm", Eng. Comput., 15(8), 1031-1048. https://doi.org/10.1108/02644409810244129.
- Radhika, N., Kamireddy, T., Kanithi, R. and Shivashankar, A. (2018), "Fabrication of Cu-Sn-Ni /SiC FGM for automotive applications: investigation of its mechanical and tribological properties", Environ. Sci. Pollut. Res., 102, 1705-1716. https://doi.org/10.1007/s12633-017-9657-3.
- Sethian, J.A. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163(2), 489-528. https://doi.org/10.1006/jcph.2000.6581.
- Sha, W., Xiao, M., Gao, L. and Zhang, Y. (2021), "A new level set based multi-material topology optimization method using alternating active-phase algorithm", Comp. Methods Appl. Mech. Eng., 377, 113674. https://doi.org/10.1016/j.cma.2021.113674.
- Shoberi, V. (2015), "The topology optimization design for cracked structures", Eng. Anal. Bound. Elem., 58, 26-38. https://doi.org/10.1016/j.enganabound.2015.03.002.
- Simsek, M. and Al-shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. Part B: Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.
- Smith, J.A., Mele, E., Rimington, R.P., Capel, A.J., Lewis, M.P., Silberschmidt, V.V. and Li, S. (2019), "Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications", J. Mech. Behav. Biomed. Mater., 93, 130-142. https://doi.org/10.1016/j.jmbbm.2019.02.012.
- Taheri, A.H. and Hassani, B. (2014), "Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies", Comp. Methods Appl. Mech. Eng., 277, 46-80. https://doi.org/10.1016/j.cma.2014.04.014.
- Wang, M.Y. and Wang, X.M. (2004a), "Color level sets: a multiphase method for structural topology optimization with multiple materials", Comp. Methods Appl. Mech. Eng., 193, 469-496. https://doi.org/10.1016/j.cma.2003.10.008.
- Wang, M.Y. and Wang, X.M. (2004b), "PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization", Comp. Modeling Eng. Sci., 6(4), 373-396. https://doi.org/10.3970/cmes.2004.006.373.
- Wang, M.Y. and Zhou, S.W. (2004c), "Synthesis of shape and topology of multi-material structures with a phase-field method", J. Comput-aid. Mater. Des., 11, 117-138. https://doi.org/10.1007/s10820-005-3169-y.
- Wang, M.Y., Wang, X.M. and Guo, D.M. (2004d), "Structural shape and topology optimization in a level-set-based framework of region representation", Struct. Multidiscip. Optimiz., 27, 1-19. https://doi.org/10.1007/s00158-003-0363-y.
- Wang, M.Y., Wang, X. and Guo D.M. (2003), "A level set method for structural topology optimization", Comput. Methods Appl. Mech. Eng., 192, 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.
- Wang, S.Y. and Wang, M.Y. (2006a), "Radial basis functions and level set method for structural topology optimization", Int. J. Numer. Methods Eng., 65, 2060-2090. https://doi.org/10.1002/nme.1536.
- Wang, S.Y. and Wang, M.Y. (2006b), "Structural shape and topology optimization using an implicit free boundary parametrization method", Comp. Modeling Eng. Sci., 13(2), 119-147. https://doi.org/10.3970/cmes.2006.013.119.
- Wei, P. and Paulino, G.H. (2020), "A parameterized level set method combined with polygonal finite elements in topology optimization", Struct. Multidiscip. Optimiz., 61, 1913-1928. https://doi.org/10.1007/s00158-019-02444-y.
- Wei, P., Li, Z., Li, Z.P. and Wang, M.Y. (2018), "An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions", Struct. Multidiscip. Optimiz., 58, 831-849. https://doi.org/10.1007/s00158-018-1904-8.
- Wei, P., Wang, M.Y. and Xing, X.H. (2010), "A study on X-FEM in continuum structural optimization using a level set model", Comput-aid. Des., 42, 708-719. https://doi.org/10.1016/j.cad.2009.12.001.
- Wu, L., Wang, Q.S. and Elishakoff, I. (2005), "Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode", J. Sound Vib., 284(3-5), 1190-1202. https://doi.org/10.1016/j.jsv.2004.08.038.
- Xia, Q., Shi, T.L. and Wang, M.Y. (2011), "A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration", Struct. Multidiscip. Optimiz., 43, 473-485. https://doi.org/10.1007/s00158-010-0595-6.
- Xia, Q., Shi, T.L., Liu, S.Y. and Wang, M.Y. (2012), "A level set solution to the stress-based structural shape and topology optimization", Comp. Struct., 90-91, 55-64. https://doi.org/10.1016/j.compstruc.2011.10.009.
- Xia, Q., Wang, M.Y. and Shi, T.L. (2014), "A level set method for shape and topology optimization of both structure and support of continuum structures", Comp. Methods Appl. Mech. Eng., 272, 340-353. https://doi.org/10.1016/j.cma.2014.01.014.
- Xia, Q., Wang, M.Y. and Shi, T.L. (2015), "Topology optimization with pressure load through a level set method", Comp. Methods Appl. Mech. Eng., 283, 177-195. https://doi.org/10.1016/j.cma.2014.01.014.
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B: Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005.
- Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comp. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C.
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
- Zhang, W., Feng, Z. and Cao, D. (2012), "Nonlinear dynamics analysis of aero engine blades", J. Dyn. Control, 10, 213-221. https://doi.org/10.1109/UKSIM.2011.48.