• 제목/요약/키워드: Relaxed cocoercive mapping

검색결과 11건 처리시간 0.027초

PROJECTION METHODS FOR RELAXED COCOERCIVE VARIATION INEQUALITIES IN HILBERT SPACES

  • Su, Yongfu;Zhang, Hong
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.431-440
    • /
    • 2009
  • In this paper, we introduce and consider a new system of relaxed cocoercive variational inequalities involving three different operators and the concept of projective nonexpansive mapping. Base on the projection technique, we suggest two kinds of new iterative methods for the approximate solvability of this system. The results presented in this paper extend and improve the main results of [S.S. Chang, H.W.J. Lee, C.K. Chan, Generalized system for relaxed co coercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334] and [Z. Huang, M. Aslam Noor, An explicit projection method for a system of nonlinear variational inequalities with different ($\gamma,r$)-cocoercive mappings, Appl. Math. Comput. (2007), doi:10.1016/j.amc.2007.01.032].

  • PDF

GENERALIZED SYSTEM FOR RELAXED COCOERCIVE EXTENDED GENERAL VARIATIONAL INEQUALITIES

  • Jun-Min, Chen;Hui, Tong
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.561-567
    • /
    • 2012
  • The approximate solvability of a generalized system for relaxed cocoercive extended general variational inequalities is studied by using the project operator technique. The results presented in this paper are more general and include many previously known results as special cases.

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권2호
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

A HYBRID PROJECTION METHOD FOR RELAXED COCOERCIVE MAPPINGS AND STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • 제28권3호
    • /
    • pp.305-320
    • /
    • 2012
  • The purpose of this paper is to introduce a hybrid projection method for finding a common element of the set of solutions of a generalized equilibrium problem, the set of solutions of a variational inclusion problem and the set of common fixed points of a finite family of strict pseudo-contractions in Hilbert spaces.

CONVERGENCE OF PARALLEL ITERATIVE ALGORITHMS FOR A SYSTEM OF NONLINEAR VARIATIONAL INEQUALITIES IN BANACH SPACES

  • JEONG, JAE UG
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.61-73
    • /
    • 2016
  • In this paper, we consider the problems of convergence of parallel iterative algorithms for a system of nonlinear variational inequalities and nonexpansive mappings. Strong convergence theorems are established in the frame work of real Banach spaces.

SYSTEM OF GENERALIZED NONLINEAR REGULARIZED NONCONVEX VARIATIONAL INEQUALITIES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • 제24권2호
    • /
    • pp.181-198
    • /
    • 2016
  • In this work, we suggest a new system of generalized nonlinear regularized nonconvex variational inequalities in a real Hilbert space and establish an equivalence relation between this system and fixed point problems. By using the equivalence relation we suggest a new perturbed projection iterative algorithms with mixed errors for finding a solution set of system of generalized nonlinear regularized nonconvex variational inequalities.

CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF GENERALIZED VARIATIONAL INEQUALITIES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • 제21권3호
    • /
    • pp.213-222
    • /
    • 2013
  • In this paper, we introduce and consider a new system of generalized variational inequalities involving five different operators. Using the sunny nonexpansive retraction technique we suggest and analyze some new explicit iterative methods for this system of variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Our results can be viewed as a refinement and improvement of the previously known results for variational inequalities.

NEW PROXIMAL ALGORITHMS FOR A CLASS OF $(A,\;{\eta})-ACCRETIVE$ VARIATIONAL INCLUSION PROBLEMS WITH NON-ACCRETIVE SET-VALUED MAPPINGS

  • Lan, Heng-You
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.255-267
    • /
    • 2007
  • In this work, by using Xu's inequality, Nalder's results, the notion of $(A,\;{\eta})-accretive$ mappings and the new resolvent operator technique associated with $(A,\;{\eta})-accretive$ mappings due to Lan et al., we study the existence of solutions for a new class of $(A,\;{\eta})-accretive$ variational inclusion problems with non-accretive set-valued mappings and the convergence of the iterative sequences generated by the algorithms in Banach spaces. Our results are new and extend, improve and unify the corresponding results in this field.

A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuanzhi;Yang, Qing
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we introduce and study a system of nonlinear set-valued implicit variational inclusions (SNSIVI) with relaxed cocoercive mappings in real Banach spaces. By using resolvent operator technique for M-accretive mapping, we construct a new class of iterative algorithms for solving this class of system of set-valued implicit variational inclusions. The convergence of iterative algorithms is proved in q-uniformly smooth Banach spaces. Our results generalize and improve the corresponding results of recent works.