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CONVERGENCE OF PARALLEL ITERATIVE ALGORITHMS

FOR A SYSTEM OF NONLINEAR VARIATIONAL

INEQUALITIES IN BANACH SPACES†

JAE UG JEONG

Abstract. In this paper, we consider the problems of convergence of par-
allel iterative algorithms for a system of nonlinear variational inequalities
and nonexpansive mappings. Strong convergence theorems are established

in the frame work of real Banach spaces.
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1. Introduction

Let (E, ∥ · ∥) be a Banach space and C be a nonempty closed convex subset
of E. This paper deals with the problems of convergence of iterative algorithms
for a system of nonlinear variational inequalities: Find (x∗, y∗) ∈ C × C such
that{

⟨ρ1T1(y
∗, x∗) + g1(x

∗)− g1(y
∗), j(g1(x)− g1(x

∗))⟩ ≥ 0, ∀g1(x) ∈ C,

⟨ρ2T2(x
∗, y∗) + g2(y

∗)− g2(x
∗), j(g2(x)− g2(y

∗))⟩ ≥ 0, ∀g2(x) ∈ C,
(1.1)

where T1, T2 : C × C → E, g1, g2 : C → C are nonlinear mappings, J is the
normalized duality mapping, j ∈ J and ρ1, ρ2 are two positive real numbers.

If T1, T2 : C → E are nonlinear mappings and g1 = g2 = I (I denotes the
identity mapping), then (1.1) reduces to finding (x∗, y∗) ∈ C × C such that{

⟨ρ1T1(y
∗) + x∗ − y∗, j(x− x∗)⟩ ≥ 0, ∀x ∈ C,

⟨ρ2T2(x
∗) + y∗ − x∗, j(x− y∗)⟩ ≥ 0, ∀x ∈ C,

(1.2)

which was considered by Yao et al. [13].
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If E = H is a real Hilbert space and T1, T2 : C → H are nonlinear mappings
and g1 = g2 = g, then (1.1) reduces to finding (x∗, y∗) ∈ C × C such that{

⟨ρ1T1(y
∗) + g(x∗)− g(y∗), g(x)− g(x∗)⟩ ≥ 0, ∀g(x) ∈ C,

⟨ρ2T2(x
∗) + g(y∗)− g(x∗), g(x)− g(y∗)⟩ ≥ 0, ∀g(x) ∈ C,

(1.3)

which was studied by Yang et al. [12].

If g = I, then (1.3) reduces to finding (x∗, y∗) ∈ C × C such that{
⟨ρ1T1(y

∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨ρ2T2(x
∗) + y∗ − x∗, x− y∗⟩ ≥ 0, ∀x ∈ C,

(1.4)

which was introduced by Ceng et al. [2].
In particular, if T1 = T2 = T , then (1.4) reduces to finding (x∗, y∗) ∈ C × C

such that {
⟨ρ1T (y∗) + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨ρ2T (x∗) + y∗ − x∗, x− y∗⟩ ≥ 0, ∀x ∈ C,
(1.5)

which is defined by Verma [9].

Further, if x∗ = y∗, then (1.5) reduces to the following classical variational
inequality (VI(T,C)) of finding x∗ ∈ C such that

⟨T (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C. (1.6)

We can see easily that the variational inequality (1.6) is equivalent to a fixed
point problem. An element x∗ ∈ C is a solution of the variational inequality
(1.6) if and only if x∗ ∈ C is a fixed point of the mapping PC(I−λT ), where PC

is the metric projection and λ is a positive real number. This alternative equiv-
alent formulation has played a significant role in the studies of the variational
inequalities and related optimization problems.

Recent development of the variational inequality is to design efficient iterative
algorithms to compute approximate solutions for variational inequalities and
their generalization. Up to now, many authors have presented implementable
and significant numerical methods such as projection method and it’s variant
forms, linear approximation, descent method, Newton’s method and the method
based on auxiliary principle technique.

However, these sequential iterative methods are only suitable for implement-
ing on the traditional single-processor computer. To satisfy practical require-
ments of modern multiprocessor systems, efficient iterative methods having par-
allel characteristics need to be further developed for the system of variational
inequalities (see [1,4,5,6,12,14]).

Motivated and inspired by the research work going on this field, in this pa-
per, we construct an parallel iterative algorithm for approximating the solution
of a new system of variational inequalities involving four different nonlinear map-
pings. Finally, we prove the strong convergence of the purposed iterative scheme
in 2-uniformly smooth Banach spaces.
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2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E with the
dual space E∗. Let ⟨·, ·⟩ denote the dual pair between E and E∗. Let 2E denote
the family of all the nonempty subsets of E. For q > 1, the generalized duality
mapping Jq : E → 2E

∗
is defined by

Jq(x) = {f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥q, ∥f∗∥ = ∥x∥q−1}, ∀x ∈ E.

In particular, J = J2 is the normalized duality mapping. It is known that
Jq(x) = ∥x∥q−2J(x) for all x ∈ E and Jq is single-valued if E∗ is strictly convex
or E is uniformly smooth. If E = H is a Hilbert space, J = I, the identity
mappings.

Let B = {x ∈ E : ∥x∥ = 1}. A Banach space E is said to be smooth if the
limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y ∈ B. The modulus of smoothness of E is the function ρE :
[0,∞) → [0,∞) defined by

ρE(t) = sup{1
2
(∥x+ y∥+ ∥x− y∥)− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t}.

A Banach space E is called uniformly smooth if limt→0
ρE(t)

t = 0. E is called
q-uniformly smooth if there exists a constant c > 0 such that

ρE(t) ≤ ctq, q > 1.

If E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.

Definition 2.1. Let T : C × C → E be a mapping. T is said to be
(i) (δ, ξ)-relaxed cocoercive with respect to the first argument if there exist

j(x− y) ∈ J(x− y) and constants δ, ξ > 0 such that

⟨T (x, ·)− T (y, ·), j(x− y)⟩ ≥ −δ∥T (x, ·)− T (y, ·)∥2 + ξ∥x− y∥2

for all x, y ∈ C;
(ii) µ-Lipschitz continuous with respect to the first argument if there exists a

constant µ > 0 such that

∥T (x, ·)− T (y, ·)∥ ≤ µ∥x− y∥

for all x, y ∈ C;
(iii) γ-Lipschitz continuous with respect to the second argument if there exists

a constant γ > 0 such that

∥T (·, x)− T (·, y)∥ ≤ γ∥x− y∥

for all x, y ∈ C.
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Definition 2.2. Let g : C → C be a mapping. g is said to be
(i) ζ-strongly accretive if there exists a constant ζ > 0 such that

⟨g(x)− g(y), j(x− y)⟩ ≥ ζ∥x− y∥2

for all x, y ∈ C.
(ii) η-Lipschitz continuous if there exists a constant η > 0 such that

∥g(x)− g(y)∥ ≤ η∥x− y∥

for all x, y ∈ C.

Let D be a subset of C and Q be a mapping of C into D. Then Q is said to
be sunny if

Q[Q(x) + t(x−Q(x))] = Q(x)

whenever Q(x) + t(x − Q(x)) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C
into itself is called a retraction if Q2 = Q. If a mapping Q of C into itself is a
retraction, then Q(z) = z for all z ∈ R(Q), where R(Q) is the range of Q. A
subset D of C is called a sunny nonexpansive retract of C if there exists a sunny
nonexpansive retraction from C onto D.

In order to prove our main results, we also need the following lemmas.

Lemma 2.3 ([11]). Let E be a real 2-uniformly smooth Banach space. Then

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x)⟩+ 2∥Ky∥2, ∀x, y ∈ E,

where K is the 2-uniformly smooth constant of E.

Lemma 2.4 ([7]). Let C be a nonempty closed convex subset of a smooth Banach
space E and let QC be a retraction from E onto C. Then the following are
equivalent:

(i) QC is both sunny and nonexpansive;
(ii) ⟨x−QC(x), j(y −QC(x))⟩ ≤ 0 for all x ∈ E and y ∈ C.

Lemma 2.5 ([10]). Suppose {δn} is a nonnegative sequence satisfying the fol-
lowing inequality:

δn+1 ≤ (1− λn)δn + σn, ∀n ≥ 0,

with λn ∈ [0, 1],
∑∞

n=0 λn = ∞ and σn = 0(λn). Then limn→∞ δn = 0.

Lemma 2.6 ([3]). Let {cn} and {kn} be two real sequences of nonnegative num-
bers that satisfy the following conditions:

(i) 0 ≤ kn ≤ 1 for n = 1, 2, · · · and lim supn kn < 1;
(ii) cn+1 ≤ kncn for n = 1, 2, · · · .
Then cn converges to 0 as n → ∞.
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3. Iterative algorithms

In this section, we suggest a parallel iterative algorithm for solving the system
of nonlinear variational inequality (1.1). First of all, we establish the equivalence
between the system of variational inequalities and fixed point problems.

Lemma 3.1. Let C be a nonempty closed convex subset of a smooth Banach
space E. Let QC : E → C be a sunny nonexpansive retraction, Ti : C × C → E
and gi : C → C be mappings for i = 1, 2. Then (x∗, y∗) with x∗, y∗ ∈ C is a
solution of problem (1.1) if and only if{

x∗ = x∗ − g1(x
∗) +QC [g1(y

∗)− ρ1T1(y
∗, x∗)],

y∗ = y∗ − g2(y
∗) +QC [g2(x

∗)− ρ2T2(x
∗, y∗)].

Proof. Applying Lemma 2.4, we have that{
⟨ρ1T1(y

∗, x∗) + g1(x
∗)− g1(y

∗), j(g1(x)− g1(x
∗))⟩ ≥ 0, ∀g1(x) ∈ C,

⟨ρ2T2(x
∗, y∗) + g2(y

∗)− g2(x
∗), j(g2(x)− g2(y

∗))⟩ ≥ 0, ∀g2(x) ∈ C.

⇕{
⟨g1(y∗)− ρ1T1(y

∗, x∗)− g1(x
∗), j(g1(x)− g1(x

∗))⟩ ≤ 0, ∀g1(x) ∈ C,

⟨g2(x∗)− ρ2T2(x
∗, y∗)− g2(y

∗), j(g2(x)− g2(y
∗))⟩ ≤ 0, ∀g2(x) ∈ C.

⇕{
g1(x

∗) = QC [g1(y
∗)− ρ1T1(y

∗, x∗)],

g2(y
∗) = QC [g2(x

∗)− ρ2T2(x
∗, y∗)].

That is, {
x∗ = x∗ − g1(x

∗) +QC [g1(y
∗)− ρ1T1(y

∗, x∗)],

y∗ = y∗ − g2(y
∗) +QC [g2(x

∗)− ρ2T2(x
∗, y∗)].

This completes the proof. �

This fixed point formulation allow us to suggest the following parallel iterative
algorithms.

Algorithm 3.1. For any given x0, y0 ∈ C, computer the sequences {xn} and
{yn} defined by{

xn+1 = xn − g1(xn) +QC [g1(yn)− ρ1T1(yn, xn)],

yn+1 = yn − g2(yn) +QC [g2(xn)− ρ2T2(xn, yn)],

where ρ1, ρ2 are positive real numbers.

Also, we propose a relaxed parallel algorithm which can be applied to the
approximation of solution of the problem (1.1) and common fixed point of two
mappings.
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Algorithm 3.2. For any given x0, y0 ∈ C, compute the sequences {xn} and
{yn} defined by

xn+1 = (1− αn)xn + αn[κS1(xn)

+(1− κ)(xn − g1(xn) +QC(g1(yn)− ρ1T1(yn, xn)))],

yn+1 = (1− βn)yn + βn[κS2(yn)

+(1− κ)(yn − g2(yn) +QC(g2(xn)− ρ2T2(xn, yn)))],

where S1, S2 : C → C are nonexpansive mappings, {αn}, {βn} are sequences in
[0,1], κ ∈ (0, 1) and ρ1, ρ2 are positive real numbers.

If T1, T2 : C → E are nonlinear mappings and g1 = g2 = I, then the algorithm
3.1 reduces to the following parallel iterative method for solving problem (1.2).

Algorithm 3.3. For any given x0, y0 ∈ C, compute the sequences {xn} and
{yn} defined by {

xn+1 = QC [yn − ρ1T1(yn)],

yn+1 = QC [xn − ρ2T2(xn)],

where ρ1, ρ2 are positive real numbers.

If E = H is a Hilbert space, T1, T2 : C → H are nonlinear mappings and
g1 = g2 = g, Algorithm 3.1 reduces to the following parallel iterative method for
solving problem (1.3).

Algorithm 3.4. For any given x0, y0 ∈ C, compute the sequences {xn} and
{yn} defined by{

xn+1 = xn − g(xn) + PC [g(yn)− ρ1T1(yn)],

yn+1 = yn − g(yn) + PC [g(xn)− ρ2T2(xn)],

where ρ1, ρ2 are positive real numbers.

4. Main results

We now state and prove the main results of this paper.

Theorem 4.1. Let E be a 2-uniformly smooth Banach space with the 2-uniformly
smooth constant K, C be a nonempty closed convex subset of E and QC be a
sunny nonexpansive retraction from E onto C. Let Ti : C × C → E be a non-
linear mapping such that (δi, ξi)-relaxed cocoercive, µi-Lipschitz continuous with
respect to the first argument and γi-Lipschitz continuous with respect to the sec-
ond argument for i = 1, 2. Let gi : C → C be a ηi-Lipschitz continuous and
ζi-strongly accretive mapping for i = 1, 2. Assume that the following assump-
tions hold:

∣∣∣∣ρ1 − ξ1 − δ1µ
2
1

2K2µ2
1

∣∣∣∣ <
√
(ξ1 − δ1µ2

1)
2 − 2K2µ2

1τ1(2− τ1)

2K2µ2
1

, (4.1)
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2
2

2K2µ2
2

∣∣∣∣ <
√
(ξ2 − δ2µ2

2)
2 − 2K2µ2

2τ2(2− τ2)

2K2µ2
2

, (4.2)

ξ1 > δ1µ
2
1 +Kµ1

√
2τ1(2− τ1),

ξ2 > δ2µ
2
2 +Kµ2

√
2τ2(2− τ2),

where τ1 = m1+m2+ρ2γ2, τ2 = m1+m2+ρ1γ1, m1 =
√
1− 2ζ1 + 2K2η21 and

m2 =
√
1− 2ζ2 + 2K2η22.

Then there exist x∗, y∗ ∈ E, which solves the problem (1.1). Moreover, the
parallel iterative sequences {xn} and {yn} generated by the Algorithm 3.1 con-
verge to x∗ and y∗, respectively.

Proof. To proof the result, we first need to evaluate ∥xn+1 − xn∥ for all n ≥ 0.
From Algorithm 3.1 and the nonexpansive property of the sunny nonexpansive
retraction QC , we can get

∥xn+1 − xn∥
= ∥xn − g1(xn) +QC [g1(yn)− ρ1T1(yn, xn)]

− (xn−1 − g1(xn−1) +QC [g1(yn−1)− ρ1T1(yn−1, xn−1)])∥
≤ ∥xn − xn−1 − (g1(xn)− g1(xn−1))∥
+ ∥QC [g1(yn)− ρ1T1(yn, xn)]−QC [g1(yn−1)− ρ1T1(yn−1, xn−1)]∥

≤ ∥xn − xn−1 − (g1(xn)− g1(xn−1))∥
+ ∥yn − yn−1 − (g1(yn)− g1(yn−1))∥
+ ∥yn − yn−1 − ρ1(T1(yn, xn)− T1(yn−1, xn))∥
+ ρ1∥T1(yn−1, xn)− T1(yn−1, xn−1)∥. (4.3)

Using the strongly accretivity and Lipschitz continuity of g1 and Lemma 2.3, we
find that

∥xn − xn−1 − (g1(xn)− g1(xn−1))∥2

≤ ∥xn − xn−1∥ − 2⟨g1(xn)− g1(xn−1), j(xn − xn−1)⟩
+ 2K2∥g1(xn)− g1(xn−1)∥2

≤ ∥xn − xn−1∥2 − 2ζ1∥xn − xn−1∥2 + 2K2η21∥xn − xn−1∥2

= (1− 2ζ1 + 2K2η21)∥xn − xn−1∥2

and

∥yn − yn−1 − (g1(yn)− g1(yn−1))∥2 ≤ (1− 2ζ1 + 2K2η21)∥yn − yn−1∥2,
which imply that

∥xn − xn−1 − (g1(xn)− g1(xn−1))∥ ≤ m1∥xn − xn−1∥ (4.4)

and

∥yn − yn−1 − (g1(yn)− g1(yn−1))∥ ≤ m1∥yn − yn−1∥, (4.5)
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where m1 =
√
1− 2ζ1 + 2K2η21 . Since T1 is (δ1, ξ1)-relaxed cocoercive and µ1-

Lipschitz continuous with respect to the first argument, we have

∥yn − yn−1 − ρ1(T1(yn, xn)− T1(yn−1, xn))∥2

≤ ∥yn − yn−1∥2 − 2ρ1⟨T1(yn, xn)− T1(yn−1, xn), j(yn − yn−1)⟩
+ 2K2ρ21∥T1(yn, xn)− T1(yn−1, xn)∥2

≤ ∥yn − yn−1∥2 − 2ρ1[−δ1∥T1(yn, xn)− T1(yn−1, xn)∥2

+ ξ1∥yn − yn−1∥2] + 2K2ρ21∥T1(yn, xn)− T1(yn−1, xn)∥2

≤ ∥yn − yn−1∥2 + 2ρ1δ1µ
2
1∥yn − yn−1∥2 − 2ρ1ξ1∥yn − yn−1∥2

+ 2K2ρ21µ
2
1∥yn − yn−1∥2

= (1 + 2ρ1δ1µ
2
1 − 2ρ1ξ1 + 2K2ρ21µ

2
1)∥yn − yn−1∥2. (4.6)

Also,using the Lipschitz continuity of T1 with respect to second argument,

∥T1(yn−1, xn)− T1(yn−1, xn−1)∥ ≤ γ1∥xn − xn−1∥. (4.7)

Combining (4.3)-(4.7), we have

∥xn+1 − xn∥ ≤ (m1 + ρ1γ1)∥xn − xn−1∥+ (m1 + θ1)∥yn − yn−1∥, (4.8)

where θ1 =
√
1 + 2ρ1δ1µ2

1 − 2ρ1ξ1 + 2K2ρ21µ
2
1.

Similarly, since g2 is η2-Lipschitz continuous and ζ2-strongly accretive, T2

is (δ2, ξ2)-relaxed cocoercive, µ2-Lipschitz continuous with respect to the first
argument and γ2-Lipschitz continuous with respect to the second argument, we
obtain

∥yn+1 − yn∥ ≤ (m2 + θ2)∥xn − xn−1∥+ (m2 + ρ2γ2)∥yn − yn−1∥, (4.9)

where m2 =
√

1− 2ζ2 + 2K2η22 and θ2 =
√
1 + 2ρ2δ2µ2

2 − 2ρ2ξ2 + 2K2ρ22µ
2
2. It

follows from (4.8) and (4.9) that

∥xn+1 − xn∥+ ∥yn+1 − yn∥
≤ (m1 +m2 + θ2 + ρ1γ1)∥xn − xn−1∥+ (m1 +m2 + θ1 + ρ2γ2)∥yn − yn−1∥
≤ k(∥xn − xn−1∥+ ∥yn − yn−1∥), (4.10)

where k = max{m1 + m2 + θ2 + ρ1γ1,m1 + m2 + θ1 + ρ2γ2}. From (4.1) and
(4.2), we know that 0 ≤ k < 1. Let cn = ∥xn − xn−1∥ + ∥yn − yn−1∥. Then
(4.10) can be rewritten as

cn+1 ≤ kcn, n = 1, 2, · · · .

It follows from Lemma 2.6 that {xn} and {yn} are both Cauchy sequences in
E. There exist x∗, y∗ ∈ E such that xn → x∗ and yn → y∗ as n → ∞. By
continuity, we know that x∗, y∗ satisfy{

x∗ = x∗ − g1(x
∗) +QC [g1(y

∗)− ρ1T1(y
∗, x∗)],

y∗ = y∗ − g2(y
∗) +QC [g2(x

∗)− ρ2T2(x
∗, y∗)].
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It follows from Lemma 3.1 that (x∗, y∗) is a solution of problem (1.1). This
completes the proof. �

If T1, T2 : C → E are nonlinear mappings and g1 = g2 = I, the the following
corollary follows immediately from Theorem 4.1.

Corollary 4.2. Let E be a 2-uniformly smooth Banach space with the 2-uniformly
smooth constant K, C be a nonempty closed convex subset of E and QC be a
sunny nonexpansive retraction from E onto C. Let Ti : C → E be a (δi, ξi)-
relaxed cocoercive and µi-Lipschitz continuous mapping for i = 1, 2. Assume
that the following assumptions hold:∣∣∣∣ρ1 − ξ1 − δ1µ

2
1

2K2µ2
1

∣∣∣∣ < ξ1 − δ1µ
2
1

2K2µ2
1

,

∣∣∣∣ρ2 − ξ2 − δ2µ
2
2

2K2µ2
2

∣∣∣∣ < ξ2 − δ2µ
2
2

2K2µ2
2

,

ξ1 > δ1µ
2
1 and ξ2 > δ2µ

2
2.

Then there exist x∗, y∗ ∈ E, which solves the problem (1.2). Moreover, the par-
allel iterative sequences {xn} and {yn} generated by the Algorithm 3.3 converge
to x∗ and y∗, respectively.

Remark 4.1. (i) We note that Hilbert spaces and Lp(p ≥ 2) spaces are 2-
uniformly smooth.

(ii) If E = H is a Hilbert space, then a sunny nonexpansive retraction QC is
coincident with the metric projection PC from H onto C.

(iii) It is well known that the 2-uniformly smooth constant K =
√
2
2 in Hilbert

spaces.

We can obtain the following result immediately.

Corollary 4.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let Ti : C → H be a (δi, ξi)-relaxed cocoercive and µi-Lipschitz continuous
mapping for i = 1, 2. Let g : C → C be a η-Lipschitz continuous and ζ-strongly
monotone mapping. Assume that the following assumptions hold:∣∣∣∣ρ1 − ξ1 − δ1µ

2
1

µ2
1

∣∣∣∣ <
√
(ξ1 − δ1µ2

1)
2 − µ2

1τ(2− τ)

µ2
1

,

∣∣∣∣ρ2 − ξ2 − δ2µ
2
2

µ2
2

∣∣∣∣ <
√
(ξ2 − δ2µ2

2)
2 − µ2

2τ(2− τ)

µ2
2

,

ξ1 > δ1µ
2
1 + µ1

√
τ(2− τ),

ξ2 > δ2µ
2
2 + µ2

√
τ(2− τ),

where τ = 2
√
1− 2ζ + η2.
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Then there exist x∗, y∗ ∈ H, which solve the problem (1.3). Moreover, the par-
allel iterative sequences {xn} and {yn} generated by the Algorithm 3.4 converge
to x∗ and y∗, respectively.

Let Fix(Si) denote the set of fixed points of the mapping Si, i.e., Fix(Si) =
{x ∈ C : Six = x} and Ω the set of solutions of the problem (1.1).

Theorem 4.4. Let E be a 2-uniformly smooth Banach space with the 2-uniformly
smooth constant K, C be a nonempty closed convex subset of E and QC be a
sunny nonexpansive retraction from E onto C. Let Ti : C × C → E be a non-
linear mapping such that (δi, ξi)-relaxed cocoercive, µi-Lipschitz continuous with
respect to the first argument and γi-Lipschitz continuous with respect to the sec-
ond argument for i = 1, 2. Let gi : C → C be a ηi-Lipschitz continuous and
ζi-strongly accretive mapping for i = 1, 2. Let Si : C → C be a nonexpansive
mapping with a fixed point for i = 1, 2. Let {αn}, {βn} be sequences in [0, 1].
Assume that the following assumptions hold:

(C1) 0 < Θ1,n = αn(1− κ− (1− κ)(m1 + ρ1γ1))− βn(1− κ)(m2 + θ2) < 1,
(C2) 0 < Θ2,n = βn(1− κ− (1− κ)(m2 + ρ2γ2))− αn(1− κ)(m1 + θ1) < 1,
(C3)

∑∞
n=0 Θ1,n = ∞ and

∑∞
n=0 Θ2,n = ∞, where

m1 =
√
1− 2ζ1 + 2K2η21 , m2 =

√
1− 2ζ2 + 2K2η22 ,

θ1 =
√
1 + 2ρ1δ1µ2

1 − 2ρ1ξ1 + 2K2ρ21µ
2
1,

and

θ2 =
√
1 + 2ρ2δ2µ2

2 − 2ρ2ξ2 + 2K2ρ22µ
2
2.

If Ω ∩ Fix(S1) ∩ Fix(S2) ̸= ϕ, then the sequences {xn} and {yn} generated by
the Algorithm 3.2 converge to x∗ and y∗, respectively, where (x∗, y∗) ∈ Ω and
x∗, y∗ ∈ Fix(S1) ∩ Fix(S2).

Proof. Letting (x∗, y∗) ∈ Ω, we obtain from Lemma 3.1 that{
x∗ = x∗ − g1(x

∗) +QC [g1(y
∗)− ρ1T1(y

∗, x∗)],

y∗ = y∗ − g2(y
∗) +Qc[g2(x

∗)− ρ2T2(x
∗, y∗)].

Since x∗, y∗ ∈ Fix(S1) ∩ Fix(S2), we have{
x∗ = S1(x

∗ − g1(x
∗) +QC [g1(y

∗)− ρ1T1(y
∗, x∗)]),

y∗ = S2(y
∗ − g2(y

∗) +QC [g2(x
∗)− ρ2T2(x

∗, y∗)]).

Putting e1,n = κS1(xn) + (1 − κ)(xn − g1(xn) +QC [g1(yn)− ρ1T1(yn, xn)]) for
each n = 0, 1, 2, · · · , we arrive at

∥e1,n − x∗∥
= ∥κS1(xn) + (1− κ)(xn − g1(xn) +QC [g1(yn)− ρ1T1(yn, xn)])− x∗∥
≤ κ∥S1(xn)− x∗∥+ (1− κ)∥xn − g1(xn) +QC [g1(yn)− ρ1T1(yn, xn)]
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− (x∗ − g1(x
∗) +QC [g1(y

∗)− ρ1T1(y
∗, x∗)])∥

≤ κ∥xn − x∗∥+ (1− κ)[∥xn − x∗ − (g1(xn)− g1(x
∗))∥

+ ∥QC [g1(yn)− ρ1T1(yn, xn)]−QC [g1(y
∗)− ρ1T1(y

∗, x∗)]∥
≤ κ∥xn − x∗∥+ (1− κ)[∥xn − x∗ − (g1(xn)− g1(x

∗))∥
+ ∥yn − y∗ − (g1(yn)− g1(y

∗))∥
+ ∥yn − y∗ − ρ1(T1(yn, xn)− T1(y

∗, xn))∥
+ ρ1∥T1(y

∗, xn)− T1(y
∗, x∗)∥]. (4.11)

Using the arguments as in the proof of Theorem 4.1, we obtain

∥xn − x∗ − (g1(xn)− g1(x
∗))∥ ≤ m1∥xn − x∗∥,

∥yn − y∗ − (g1(yn)− g1(y
∗))∥ ≤ m1∥yn − y∗∥,

∥yn − y∗ − ρ1(T1(yn, xn)− T1(y
∗, xn))∥ ≤ θ1∥yn − y∗∥,

and

∥T1(y
∗, xn)− T1(y

∗, x∗)∥ ≤ γ1∥xn − x∗∥,

where m1 =
√
1− 2ζ1 + 2K2η21 and θ1 =

√
1 + 2ρ1δ1µ2

1 − 2ρ1ξ1 + 2K2ρ21µ
2
1.

From (4.11), we have

∥e1,n − x∗∥ ≤ κ∥xn − x∗∥+ (1− κ)[m1∥xn − x∗∥+m1∥yn − y∗∥
+ θ1∥yn − y∗∥+ ρ1γ1∥xn − x∗∥]

= [κ+ (1− κ)(m1 + ρ1γ1)]∥xn − x∗∥
+ (1− κ)(m1 + θ1)∥yn − y∗∥.

It follows that

∥xn+1 − x∗∥ ≤ (1− αn)∥xn − x∗∥+ αn∥e1,n − x∗∥
≤ (1− αn)∥xn − x∗∥+ αn{[κ+ (1− κ)(m1 + ρ1γ1)]∥xn − x∗∥
+ (1− κ)(m1 + θ1)∥yn − y∗∥}

= [1− αn + αn(κ+ (1− κ)(m1 + ρ1γ1))]∥xn − x∗∥
+ αn(1− κ)(m1 + θ1)∥yn − y∗∥. (4.12)

Similarly, we obtain

∥yn+1 − y∗∥ = βn(1− κ)(m2 + θ2)∥xn − x∗∥
+ [1− βn + βn(κ+ (1− κ)(m2 + ρ2γ2))]∥yn − y∗∥. (4.13)

where m2 =
√
1− 2ζ2 + 2K2η22 and θ2 =

√
1 + 2ρ2δ2µ2

2 − 2ρ2ξ2 + 2ρ22K
2µ2

2.
Now (4.12) and (4.13) imply

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥
≤ [1− (αn(1− κ− (1− κ)(m1 + ρ1γ1))− βn(1− κ)(m2 + θ2))]∥xn − x∗∥
+ [1− (βn(1− κ− (1− κ)(m2 + ρ2γ2))− αn(1− κ)(m1 + θ1))]∥yn − y∗∥
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≤ max{(1−Θ1,n), (1−Θ2,n)}(∥xn − x∗∥+ ∥yn − y∗∥), (4.14)

where

Θ1,n = αn(1− κ− (1− κ)(m1 + ρ1γ1))− βn(1− κ)(m2 + θ2),

Θ2,n = βn(1− κ− (1− κ)(m2 + ρ2γ2))− αn(1− κ)(m1 + θ1).

Define the norm ∥ · ∥∗ on E × E by

∥(x, y)∥∗ = ∥x∥+ ∥y∥, ∀(x, y) ∈ E × E.

Then (E × E, ∥ · ∥∗) is a Banach space. Hence, (4,14) implies that

∥(xn+1, yn+1)− (x∗, y∗)∥∗
≤ max{(1−Θ1,n), (1−Θ2,n)}∥(xn, yn)− (x∗, y∗)∥∗. (4.15)

From the conditions (C1)-(C3) and Lemma 2.5 to (4.15), we obtain that

lim
n→∞

∥(xn+1, yn+1)− (x∗, y∗)∥∗ = 0.

Therefore, the sequences {xn} and {yn} converge to x∗ and y∗, respectively.
This completes the proof. �

Remark 4.2. Theorem 4.1 and 4.4 extend the solvability of the systems of
variational inequalities (1.2)-(1.6) to the more general system of variational in-
equalities (1.1). The underlying mapping Ti : C×C → E (i = 1, 2) in our paper
needs to be relaxed (δi, ξi)-relaxed cocoercive while the underlying operators
A,B in [13] needs to inverse strongly accretive. Hence, Theorem 4.1 and 4.4
extend and improve the main results of [9,12,13].
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