References
- G. Stampacchia, Formes bilinearies coercivities sur les ensembles convexes, C.R. Acad.Sci. Paris 258 (1964) 4413-4416.
- J. Lions, G. Stampacchia, Variational inequalities, Commun, Pure Appl. Math. 20 (1967) 493-512.
- D. Gabay, Applications of the Method of Multipliers Variational Inequalities, Augmented Lagrangian Methods, Edited by M. Fortin and R. Glowinski, North-Holland, Amsterdam, Holland, 1983, pp. 299-331.
- R. Verma, Generalized system for relaxed cocoercive variational inequalities and its projection methods, J. Optim. Theory Appl. 121 (1) (2004) 203-210. https://doi.org/10.1023/B:JOTA.0000026271.19947.05
- R. Verma, Generalized class of partial relaxed monotonicity and its connections, Adv. Nonlinear Var. Inequal. 7 (2) (2004) 155-164.
- R. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (11) (2005) 1286-1292. https://doi.org/10.1016/j.aml.2005.02.026
- D. Zhu, P. Marcotte, Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996) 714-726. https://doi.org/10.1137/S1052623494250415
- S. Chang, H. Lee, C. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334 https://doi.org/10.1016/j.aml.2006.04.017
-
Z. Huang, M. Aslam Noor, An explicit projection method for a system of nonlinear variational inequalities with different
$\gamma,\tau-$ )cocoercive mappings, Appl. Math. Comput. (2007), doi:10.1016/j.amc.2007.01.032